Skip to main content

Advertisement

A Fokker-Planck neuronal network model to capture mean firing rate and pair-wise correlations in large-scale neuronal networks

Article metrics

  • 1303 Accesses

A Fokker-Planck neuronal network model is presented. This model can be efficiently implemented to investigate how the mean firing rate and pair-wise correlations in each population depend on certain first and second order statistical patterns of connectivity. To capture pair-wise correlations among neurons in each population, we derive the evolution equations of the joint population density ρ(v1,v2,t) of the voltage of any pair of neurons in the population. By assuming that the input to any pair of neurons is a multivariate Poisson point process, we obtain partial differential-integral equations for each population, but closure of this system of equations requires inferring higher order statistics of activity. We simplify the framework by applying a diffusion approximation and obtain Fokker-Planck equations for each population. We prove that, under some assumptions, the coupling scheme to derive network equations can be based on only the first and second order statistics of activity and connectivity, without the need to infer higher order statistics. Also, fast numerical methods can be devised to solve this simple network model. We test the validity of our network model by comparing the numerical solutions to Monte Carlo simulations under various network configurations. Finally, we discuss the success and failure of our Fokker-Planck neuronal network model.

Author information

Correspondence to Chin-Yueh Liu.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Liu, C., Nykamp, D.Q. A Fokker-Planck neuronal network model to capture mean firing rate and pair-wise correlations in large-scale neuronal networks. BMC Neurosci 11, P50 (2010) doi:10.1186/1471-2202-11-S1-P50

Download citation

Keywords

  • Firing Rate
  • Monte Carlo Simulation
  • Point Process
  • Neuronal Network
  • Diffusion Approximation