Skip to main content
  • Poster presentation
  • Open access
  • Published:

Synaptic scaling enables dynamically distinct short- and long-term memory formation

Memory formation in the nervous system relies on mechanisms acting on time scales from minutes, for long-term synaptic plasticity [1], to days, for memory consolidation [2]. During such processes, the neural network distinguishes synapses relevant for forming a long-term storage (LTS), which are consolidated, from synapses of short-term storage (STS), which fade. How time scale integration and synaptic differentiation is simultaneously achieved within one neural circuit remains unclear. We show in simulations and mean-field analyses that synaptic scaling [3] - a slow process usually associated with the maintenance of activity homeostasis - combined with the faster processes of synaptic plasticity simultaneously achieve both, thereby providing a natural separation of short- from long-term storage. A network intrinsic bifurcation enables this separation as this bifurcation induces different response properties of previously learned cell assemblies due to external memory reactivations. These reactivations could be associated with "sleep-like" activations as, for instance, sharp-wave ripples during slow-wave sleep [4, 5]. Additionally, the interaction between plasticity and scaling provides an explanation for an established paradox where memory consolidation and destabilization critically depends on the exact order of learning and recall. This enables us to reproduce human-psychophysical results [6] on the apparently paradoxical effect of memory destabilization due to memory recall [7]. However, other experimentalists failed to reproduce this memory destabilization effect (e.g., [8]). This ambivalence can be explained by the here proposed bifurcation scenario as the initial conditions and exact timings of recall and learning determine the transition between consolidation and destabilization. Thus, the dynamics of our model yield the fact that memory - similar to the real systems - remains susceptible to perturbations and has to be repeatedly consolidated [2] which could happen during sleep [4, 5]. To achieve a final stabilization of memory, systems consolidation, which also begins during sleep [4], performs a transition from a dynamic to a more static memory representation by transferring the information to the neocortex [2]. The processes suggested here are capable of repeatedly (re)consolidating LTS-synapses, while STS-candidates fade. This may thus essentially contribute to providing a stable substrate for systems consolidation.

References

  1. Bliss TVP, Lomo T: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973, 232: 331-356.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dudai Y: The neurobiology of consolidation, or, how stable is the engram?. Annu Rev Psychol. 2004, 55: 51-86. 10.1146/annurev.psych.55.090902.142050.

    Article  PubMed  Google Scholar 

  3. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB: Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998, 391: 892-896. 10.1038/36103.

    Article  CAS  PubMed  Google Scholar 

  4. Diekelmann S, Born J: The memory function of sleep. Nat Rev Neurosci. 2010, 11: 114-126.

    Article  CAS  PubMed  Google Scholar 

  5. Chauvette S, Seigneur J, Timofeev I: Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron. 2012, 75: 1105-1113. 10.1016/j.neuron.2012.08.034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Walker MP, Brakefield T, Hobson JA, Stickgold R: Dissociable stages of human memory consolidation and reconsolidation. Nature. 2003, 425: 616-620. 10.1038/nature01930.

    Article  CAS  PubMed  Google Scholar 

  7. Nader K, Schafe GE, LeDoux JE: Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000, 406: 722-726. 10.1038/35021052.

    Article  CAS  PubMed  Google Scholar 

  8. Cammarota M, Bevilaqua LR, Medina LRM, Izquierdo I: Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn Mem. 2004, 11: 572-578. 10.1101/lm.76804.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Tetzlaff.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Tetzlaff, C., Kolodziejski, C., Timme, M. et al. Synaptic scaling enables dynamically distinct short- and long-term memory formation. BMC Neurosci 14 (Suppl 1), P415 (2013). https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2202-14-S1-P415

Download citation

  • Published:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2202-14-S1-P415

Keywords