Skip to main content
Figure 2 | BMC Neuroscience

Figure 2

From: The extracellular matrix, p53 and estrogen compete to regulate cell-surface Fas/Apo-1 suicide receptor expression in proliferating embryonic cerebral cortical precursors, and reciprocally, Fas-ligand modifies estrogen control of cell-cycle proteins

Figure 2

Identification of two unique populations of cell-surface Fas-expressing precursors (A-D). Flow cytometric analysis of the cell-cycle distribution of cultured embryonic cortical precursors (A), based on frequency histogram analysis of propidium iodide (PI) incorporation into DNA in 10,000 cells from each sample, indicates that a majority of cells precursors are in G0. Precursors with DNA content <G0 were identified as apoptotic, while precursors with >G0 DNA content were identified as being in S-G2-M. (B,C) Scatter-plots of two representative independent samples of embryonic cortical-derived neuronal precursors analyzed for combined cell-surface Fas immuno-fluorescence (y-axis) and PI incorporation (cell-cycle stage, x-axis). Based on background immuno-fluorescence patterns in the pre-immune serum controls (D), precursors were characterized as negative Fas-expressing (Fas-ve, expressing <2 × 100 fluorescence units [FUs]), moderate Fas-expressing (FasMod, expressing >2 × 100 and <102 FUs) and high cell surface Fas-expressing (FasHi, >102 FUs). These categories remained consistent across experiments. (E & F) Graphical representation (Mean ± SEM) of the proportion of precursors expressing high (FasHi, E) and moderate (FasMod, F) levels of cell-surface Fas at different stages of cell cycle and apoptosis, expressed as a percentage of control. Asterisks indicate statistically significant differences in cell-stage-specific expression of cell surface Fas, p < 0.05.

Back to article page