Skip to main content
  • Poster presentation
  • Open access
  • Published:

Optimal neural connection mechanism in cortical network

Background

The mammalian cortical system consists of diverse neurons with different spatial coverage. Previous studies suggest that neurons with only local connections and those with most widespread connections should be most and least numerous, respectively [1]. However, synaptic connection mechanisms between neurons are still unclear. Based on the previous studies [1, 2], we assume that neurons with large spatial coverage may be preferentially synaptically connected. We applied the methods of complex networks to model the neural connection mechanism. The cortical network was modeled in a two-dimensional Euclidean plane, in which neurons can only connect to those in their spatial coverage. For connection mechanisms, random connection and the preferential attachments to nearest neurons and to neurons with large spatial coverage were considered.

Results and conclusion

Results indicated that compared with other cases, the cortical network with the preferential attachment to neurons with large spatial coverage (PANLSC) showed an optimal architecture, represented by high clustering, short processing steps and short wiring lengths that are important statistical properties and constraints for the design of neural networks. We speculate that the PANLSC is an optimal neural connection mechanism in cortical systems.

References

  1. Buzsáki G, Geisler C, Henze DA, Wang XJ: Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 2004, 27: 186-193. 10.1016/j.tins.2004.02.007.

    Article  PubMed  Google Scholar 

  2. Zhao QB, Feng HB, Tang Y: Modeling Human Cortical Network in Real Brain Space. Chin Phys Lett. 2007, 24 (12): 3582-3585. 10.1088/0256-307X/24/12/079.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China Grant 60472017 and 30670699, Ministry of Education Grant NCET-06-0277 and 021010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yuan Tang.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhao, Q., Tang, YY. Optimal neural connection mechanism in cortical network. BMC Neurosci 9 (Suppl 1), P15 (2008). https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2202-9-S1-P15

Download citation

  • Published:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2202-9-S1-P15

Keywords