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In the correlation analysis of experimentally recorded
parallel spike trains one has to thoroughly consider the
statistical features of the data in order to prevent false
positive results [1]. Typically, the complexity of the data
prevents us from using analytical expressions for evalu-
ating the significance of observed correlations. Similarly,
parametric tests presuppose models that are typically
simplifications of the real neuronal data and thus may
ignore important features. An alternative to these
approaches is to use surrogate data, i.e. modified ver-
sions of the original data, to assess the significance [2].
The goal of this study is to develop selection criteria for
suitable surrogate types.
To study the applicability of surrogates we defined

data sets exhibiting different statistical features found
in typical experimental data (non-stationary firing
rates, cross-trial non-stationary rates, deviation from
Poisson) in combinations of increasing complexity.
To demonstrate the impact of surrogate schemes on
correlation analysis, we examine these with different
surrogate generation methods commonly used in the
literature [1]. Common to all these methods is that
they in one way or the other destroy the precise tem-
poral relation of the spiking activities between the
neurons, by e.g. shuffling the trial ids (tr-shu) [3],
randomizing the spike times (sp-rnd), randomly
dithering the whole spike train against the other (tr-
di) [4,5], dithering of individual spike times (sp-di)
[6,7], dithering spike times under conservation of the
joint-ISI distribution (jisi-di) [8], or by exchanging
spikes across trials under local preservation of spike
counts (sp-exg) [9,10].
To quantify the applicability of the various surro-

gates for significance estimation of spike correlation
we concentrate on spike coincidences (allowed

temporal precision: +/-1ms) and use their empirical
count nemp as a test statistic. The p-value of nemp is
obtained by comparing it to the surrogates’ coinci-
dence count distributions. To evaluate the true perfor-
mance of the surrogates we study the false positive
(FP) and false negative (FN) rates for different config-
urations of parameters implemented in simulated data
(rate modulation, regularity, non-stationarity across
trials, co-variation of rates).
Based on the FN and FP performances, we find spike

train dithering (tr-di) as the most robust detector of
excess coincidences amongst the selected surrogates
methods. Its detection accuracy is seemingly unaffected
by the level of complexity of the data and its sensitivity
remains at acceptable levels. Still, tr-di smooths the fir-
ing rate profile on the time scale of the dither width,
and it is expected to produce false positives is the case
of abrupt transients in firing rate. With the aim of deal-
ing with this issue, further work is being done on the
development of novel methods taking into account the
observed firing rate profile. Doing so enables an approx-
imate mapping of non-stationary processes to stationary
ones, through which more accurate surrogates can be
generated.
This study illustrates the serious need to select appro-

priate surrogate methods when evaluating the signifi-
cance of correlations observed in a given data set. Not
doing so can lead to false conclusions and misinterpre-
tation of the data. We therefore strongly recommend to
test the chosen method on synthetic data which is as
similar as possible to the experimental data at hand, but
yet does not contain the feature being tested for, before
proceeding with the analysis to control for false positive
results [11].
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Figure 1 False positive (a.) and false negative (b.) percentages for all tested surrogate methods across five different data types. Colors code FP
and FN percentages. White squares mark the position of bars of 100% FP.
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