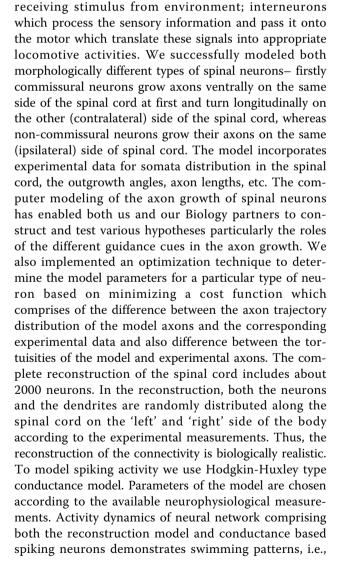
ORAL PRESENTATION

Open Access


Gradient based spinal cord axogenesis and locomotor connectome of the hatchling *Xenopus* tadpole

Abul Kalam al Azad^{1*}, Roman Borisyuk^{1,2}, Alan Roberts³, Steve Soffe³

From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011

Understanding the mechanisms underlying the selfassembly and organization of functional neuronal networks is a crucial problem confronting both experimental and theoretical neuroscience alike. Early in development, functional neuronal networks self-assemble with astonishing rapidity. It is, therefore, imperative to investigate and understand how far simple basic mechanisms can allow primary functioning neuronal circuits to develop. To address this 'structure-function' issue, we model anatomy and electrophysiology of young hatchling Xenopus tadpole's spinal cord [1-3]. Our bottom-up approach to modeling of neuronal connectivity is based on developmental process of axon growth - we develop a gradient-based mathematical model for axon growth. It is known that in the developing vertebrate spinal cord, neurons arise from progenitor cells in the neural tube and thereafter the axons grow under influence of chemical morphogenes released from the dorsal roof plate ('BMP'), ventral floor plate ('shh') and hindbrain regions ('Wnt'). Distribution of these guidance molecules along the spinal cord set up a gradient field which steer the axons in appropriate locations and thus ensure formation of proper connections. We grow axons of spinal neurons and generate synaptic connections similar to biological developmental process based on the data from Professor Alan Roberts Lab at University of Bristol [4]. Using the gradient-based model we were able to grow axons for all seven types of spinal neurons which are believed to be involved in swimming and struggling behavior of tadpole. These spinal neurons include sensory neurons which are responsible for

Full list of author information is available at the end of the article

© 2011 Kalam al Azad et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: abul.azad@plymouth.ac.uk

¹School of Computing and Mathematics, University of Plymouth, Plymouth, PL48AA, UK

anti-phase oscillations on opposite sides of the body and metachronal wave in longitudinal direction in a wide range of model parameters.

Acknowledgements

This work was supported by BBSRC grant.

Author details

¹School of Computing and Mathematics, University of Plymouth, Plymouth, PL48AA, UK. ²Institute of Mathematical Problems in Biology, Pushchino, Moscow Region, 142290, Russia. ³School of Biological Sciences, University of Bristol, Bristol, BS81UG, UK.

Published: 18 July 2011

References

- Li WC, Cooke T, Sautois B, Soffe SR, Borisyuk R, Roberts A: Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. *Neural Development* 2007, 2.
- 2. Borisyuk R, Cooke T, Roberts A: **Stochasticity and functionality of neural systems: Mathematical modeling of axon growth in the spinal cord of tadpole.** *BioSystems* 2008, **93**:101-114.
- Borisyuk R, Azad AKA, Roberts A: Modeling the connectome of a simple spinal cord locomotor network., in progress.
- Bristol Xenopus Lab:[http://www.bristol.ac.uk/biology/research/behaviour/ xenopus/].

doi:10.1186/1471-2202-12-S1-O9

Cite this article as: Kalam al Azad *et al.*: **Gradient based spinal cord axogenesis and locomotor connectome of the hatchling** *Xenopus* **tadpole**. *BMC Neuroscience* 2011 **12**(Suppl 1):O9.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit