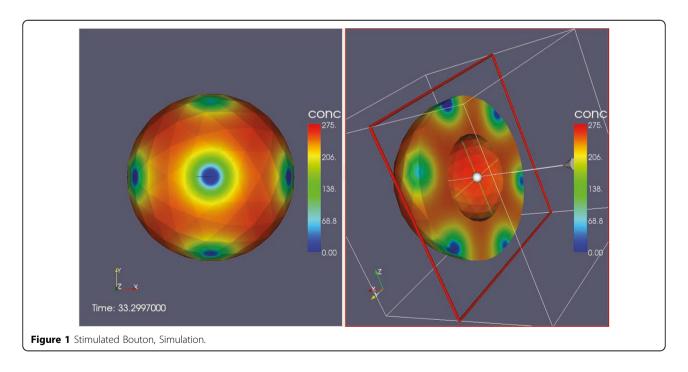
POSTER PRESENTATION


Open Access

Synaptic bouton sizes are tuned to best fit their physiological performances

Markus Knodel^{1*}, Gillian Queisser¹, Dan Bucher², Romina Geiger², Lee How Ge², Alfio Grillo¹, Christoph Schuster², Gabriel Wittum¹

From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011

To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade

* Correspondence: markus.knodel@gcsc.uni-frankfurt.de

¹GCSC Frankfurt, Frankfurt University, Germany

Full list of author information is available at the end of the article

© 2011 Knodel et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and P_o),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues. Figure 1.

Author details

¹GCSC Frankfurt, Frankfurt University, Germany. ²IZN Heidelberg, Heidelberg University, Germany.

Published: 18 July 2011

References

- 1. Jan L, Jan Y: Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 1976, 262(1):189-214.
- Schuster C, Davis G, Fetter R, Goodman C: Genetic dissection of structural and functional components of synaptic plasticity. ii fasciclin ii controls presynaptic structural plasticity. *Neuron* 1996, 17(4):655-67.
- Delgado R, Maureira C, Oliva C, Kidokoro Y, Labarca P: Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 2000, 28:941-53.
- Bastian P, Birken K, Johannsen K, Lang S, Reichenberger V, Wieners C, Wittum G, Wrobel CA: parallel software-platform for solving problems of partial differential equations using unstructured gr ids and adaptive multigrid methods. In *High performance computing in science and engineering.* Springer;W. Jäger and E. Krause 1999:326-339.

doi:10.1186/1471-2202-12-S1-P371

Cite this article as: Knodel *et al.*: **Synaptic bouton sizes are tuned to best fit their physiological performances**. *BMC Neuroscience* 2011 **12** (Suppl 1):P371.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit