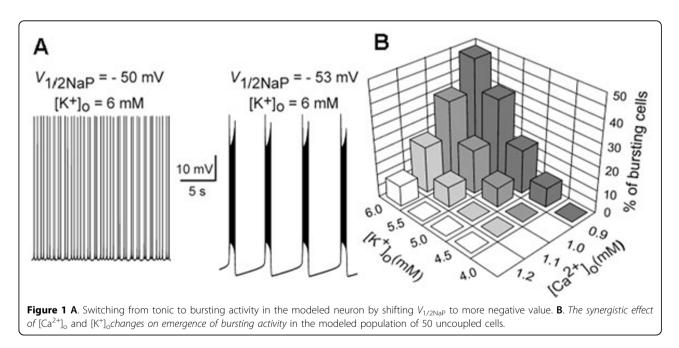
POSTER PRESENTATION


Open Access

Modeling [Ca²⁺]_o- and [K⁺]_o-dependent oscillations in spinal Hb9 interneurons

Natalia A Shevtsova^{1*}, Sabrina Tazerart^{2,3}, Laurent Vinay², Frédéric Brocard², Ilya A Rybak¹

From Twenty First Annual Computational Neuroscience Meeting: CNS*2012 Decatur, GA, USA. 21-26 July 2012

The spinal interneurons in newborn rodents, when synaptically isolated by removing the extracellular calcium ($[Ca^{2+}]_o$), demonstrate intrinsic rhythmic bursting activity that can be suppressed by riluzole, a blocker of the persistent sodium current (I_{NaP}) [2]. This finding led to the suggestion that lowering of $[Ca^{2+}]_o$ may enhance I_{NaP} by shifting its activation threshold toward more negative voltages, and raised the question of functional relevance of this finding to generation of locomotor rhythm. To assess this issue, a series of experiments was performed *in vitro* using the isolated spinal cord preparation from the neonatal rat with measurements of $[Ca^{2+}]_o$ and extracellular potassium concentration ($[K^+]_o$) during pharmacologically induced fictive locomotion. We demonstrated that with the onset of fictive locomotion, $[Ca^{2+}]_o$ reduced from 1.2 up to 0.9 mM whereas $[K^+]_o$ increased from 4 up to 6 mM. At the same time, a special study performed on the isolated genetically identified Hb9 excitatory interneurons showed that, at $[Ca^2^+]_o=1$ mM and $[K^+]_o=5$ mM, 12% of Hb9 cells expressed intrinsic I_{NaP} -dependent bursting, and at the concentrations typical for fictive locomotion ($[Ca^{2+}]_o=$

* Correspondence: Natalia.Shevtsova@drexelmed.edu

¹Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA

Full list of author information is available at the end of the article

© 2012 Shevtsova et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0.9 mM and $[K^+]_o=6$ mM), as many as 50% of identified Hb9 interneurons expressed $I_{\rm NaP}$ -dependent bursting. Importantly, the threshold of $[{\rm Ca}^{2+}]_o$ to generate bursting decreased as $[K^+]_o$ increased. The analysis of Hb9 neuron behavior during slow ramp increase of voltage revealed that lowering $[{\rm Ca}^{2+}]_o$ from 1.2 to 0.9 mM induced a negative shift (~ -3 mV) in the $I_{\rm NaP}$ half-activation voltage ($V_{1/2\rm NaP}$). In contrast, $V_{1/2\rm NaP}$ was not changed when $[K^+]_o$ increased from 4 to 6 mM.

To theoretically investigate the effect of changing [Ca² ⁺]_o and [K⁺]_o on the Hb9's pacemaker properties and firing behavior, we developed a single-compartment computational model of Hb9 neuron. In this model, we explicitly simulated a negative shift of $V_{1/2NaP}$ occurring with the reduction of $[Ca^{2+}]_{0,.}$ At $[K^+]_{0,.}=6$ mM, our model exhibited tonic activity at $V_{1/2\text{NaP}} = -50 \text{ mV}$ (Fig. 1A, *left*). The rhythmic bursting emerged at $V_{1/2NaP} = -$ 51 mV, and further shifting $V_{1/2NaP}$ to the left produced stable bursting (Fig. 1A, right). In turn, an increase in [K $^{\scriptscriptstyle +}]_{\rm o}$ reduced the potassium reversal potential and hence all voltage-gated potassium currents $(I_{\rm K})$, which provided an additional augmentation of I_{NaP} -dependent bursting [1]. To study a synergistic effect of $[Ca^{2+}]_0$ and $[K^+]_0$ on the emergence of bursting activity, we modeled a population of 50 uncoupled neurons with randomly distributed parameters (see Fig. 1B). Our simulations have shown that shifting $V_{1/2NaP}$ towards more negative values induced by reducing [Ca²⁺]_o may play a major role in emergence of bursting activity in the population of spinal interneurons. We have also demonstrated that accumulation of $[K^+]_o can$ facilitate the emergence of I_{NaP} -dependent bursting via the reduction of I_{K} .

In summary we suggest that co-regulation of I_{NaP} and I_{K} by the corresponding changes in $[\text{Ca}^{2+}]_{\text{o}}$ and $[\text{K}^+]_{\text{o}}$ may convert activity of spinal interneurons from asynchronous/tonic to the synchronized bursting. This activity-dependent switching in firing behavior may represent a fundamental mechanism for locomotor rhythm generation in the spinal cord.

Author details

¹Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA. ²Institut de Neurosciences de la Timone (UMR7289), CNRS and Aix-Marseille Université, Marseille 13385, France. ³Departments of Surgery and Anatomy and Neurobiology, Dalhousie University, Halifax NS B3H 3A7, Canada.

Published: 16 July 2012

References

- Rybak IA, Shevtsova NA, St-John WM, Paton JFR, Pierrefiche O: Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: modelling and in vitro studies. *Eur J Neurosci* 2003, 18:239-257.
- Tazerart S, Vinay L, Brocard F: The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 2008, 28:8577-8589.

doi:10.1186/1471-2202-13-S1-P49 Cite this article as: Shevtsova *et al.*: Modeling [Ca²⁺]₀- and [K⁺]₀dependent oscillations in spinal Hb9 interneurons. *BMC Neuroscience* 2012 13(Suppl 1):P49.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central