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It is clear that spatiotemporal patterning in brain networks
is a complex outcome of network physical connectivity
and dynamical properties of interacting neurons, however
characterization of this interaction remains elusive. These
dynamical properties of the cells are affected/controlled by
various neuromodulators secreted by the brain at various
cognitive cycles or as a part of the response to the incom-
ing stimuli. During sleep the brain cycles though distinct

spatiotemporal patterns of neural activity. Acetylcholine
(ACh) is a major regulatory factor of sleep states and plays
an important role in the transition from slow wave sleep
to waking or rapid eye movement sleep. Slow wave sleep
is a slow oscillation in firing rate that travels through the
cortical network and occurs when ACh levels are low [1].
At the cellular level, ACh causes changes in neural excit-
ability by shifting the neural phase response curve (PRC)
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Figure 1 PRC induced changes in network dynamics. A: Increasing gKs shifts the PRC of the model neuron from type 1 at low values to type 2
at high values. B: Raster plots showing characteristic dynamics for networks at two different PRC types. Cells are sorted by distance from the
origin in xy space and black dots represent excitatory action potentials and red dots indicate inhibitory action potentials
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from type 2 to type 1 (Figure 1A)[2]. Previous modeling
studies show that the shift of the PRC leads to a change
from synchronous (type 2 PRC) to asynchronous (type 1
PRC), network dynamics while during low ACh levels net-
works display a high level of synchrony and network wide
bursts [3]. As of yet the effects of intermediate cholinergic
modulation have not been investigated. In this study, we
use a Hodgkin-Huxley type model neuron which allows us
to simulate different ACh levels and control a continuous
transition from a type 1 to type 2 PRC [4]. We show that
the PRC type of neurons drives different spatial patterns
of activity within networks, with activity being highly loca-
lized for type 1 PRC neurons (Figure 1B) then quickly
transitioning to wave dynamics as neurons are shifted to a
type 2 PRC (Figure 1B). In networks composed of type 1
neurons, the region where activity is localized is defined
by heterogeneities in network structure, with as little as a
1% increase in synaptic strength being sufficient to define
the location of high activity. Additionally, the highly active
zone is the origin of traveling waves in type 2 networks.
When in the wave regime, decreasing cholinergic modula-
tion of the PRC increases the speed that waves travel
across the network. In summary, the precise character of
frequency dynamics is governed by the interplay between
network structure and the intrinsic excitability of compo-
nent neurons. Expanding upon our results, we argue (1)
that the intrinsic excitability of neurons shapes how activ-
ity spreads though a network and (2) that the focal point
of traveling waves during slow wave sleep is a region
selected for by synaptic potentiation.
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