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There is accumulating evidence that biological neural
networks posses optimal computational capacity when
they are at or near a critical point in which the net-
work transitions to a chaotic regime. We derive a for-
mula for the critical point of a general heterogeneous

neural network. This formula relates the structure of
the network to its critical point. The heterogeneity
of the network may describe the spatial structure, a
multiplicity of cell types or any selective connectivity
rules.
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Figure 1 (A) Example spectra of connectivity matrices (gray) with r>1 (top, indicated in blue and purple respectively) and r<1 (bottom). The
average synaptic gain (red) does not give the correct boundary of the spectrum and would predict opposite behavior. The matrix Gc(i)d(j) is
indicated by the color plots (top), and activity of representative neurons from the two groups (bottom) of each example. (B) The activity of a
readout unit during spontaneous activity, a FORCE learning epoch, and post learning for neurogenic and homogeneous subcritical networks. The
neurogenic network quickly matches the target signal (gray) and robustly reproduces it. (C) The learnability of an ensemble of neurogenic
networks as a function of the hyperexcitability and new neuron fraction coincides with contour lines of r (white).

Aljadeff et al. BMC Neuroscience 2014, 15(Suppl 1):O20
http://www.biomedcentral.com/1471-2202/15/S1/O20

© 2014 Aljadeff et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:aljadeff@ucsd.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


To define the network we divide the N neurons into D
groups such that ∑d=1...DNd=N. The synaptic weight
between neurons i,j (the connectivity matrix element Jij)
is drawn from a centered distribution with standard
deviation summarized in a D×D rule matrix N-1/2Gc(i)d(j)

(insets to A, c(i) is the type index of neuron i). The net-
work obeys the standard rate dynamics (d/dt)xi=- xi
+∑j=1...NJij tanhxj.
The global behavior of the network changes from a

single fixed point to chaos when r=1, r being the radius
of the circle that bounds the spectrum of the connectiv-
ity matrix (panel A). We derived a formula, in terms of
the matrix G and the vector Nd, for r that can also be
thought of as an effective gain[1]: it is the square root of
the maximal eigenvalue of a D×D matrix M whose c,d
element is Mcd= N-1Nc(Gcd)

2.
We use our understanding of the general heterogeneous

dynamical system to a network with a large fraction of
cells in the subcritical regime, and a small fraction of
supercritical neurons. This can be thought of as a model
of a network where adult neurogenesis occurs, where a
small fraction of hyperexcitable neurons are continuously
integrated. Using a supervised learning algorithm (FORCE,
[2]) we show that r is as a good coordinate to describe the
network’s “learnability” (Figure 1 panels B,C). Learning is
optimal for values of r similar to those found in a homoge-
nous network. Our results suggest that the new neurons
can allow the network to be poised at criticality with no
global changes to connectivity, and that their specific roles
are context dependent, in contrast to previous hypotheses.
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