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Empirical support for the Bayesian brain hypothesis,
although of major theoretical importance for cognitive
neuroscience, is surprisingly scarce. The literature still
lacks definitive functional neuroimaging evidence that
neural activities code and compute Bayesian probabilities.
Here, we introduce a new experimental design to relate
electrophysiological measures to Bayesian inference. Speci-
fically, an urns-and-balls paradigm was used to study
neural underpinnings of probabilistic inverse inference.
Event-related potentials (ERPs) were recorded from
human participants who performed the urns-and-balls
paradigm, and computational modeling was conducted on
trial-by-trial electrophysiological signals. Five computa-
tional models were compared with respect to their

capacity to predict electrophysiological measures. One
Bayesian model (BAY) was compared with another Baye-
sian model which takes potential effects of non-linear
probability weighting into account (BAYS). A predictive
surprise model (TOPS) of sequential probability revisions
was derived from the Bayesian models. A comparison was
made with two published models of surprise (DIF [1] and
OST [2]).
Subsets of the trial-by-trial electrophysiological signals

were differentially sensitive to model predictors: The
anteriorly distributed N250 was best fit by the DIF
model, the BAYS model provided the best fit to the ante-
riorly distributed P3a, whereas the posteriorly distributed
P3b and Slow Wave were best fit by the TOPS model.
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Figure 1 Scalp maps of averaged log-Bayes factors of models with non-linear probability weighting versus a null model. A. Bayesian surprise
model (BAYS). B. Predictive surprise model (TOPS).
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Figure 1 shows the model fit in log-Bayes factor [3] as
scalp maps for the BAYS and TOPS models for P3a and
P3b time windows, respectively. Table 1 summarizes the
model comparison by translating the log-Bayes factors to
posterior model probabilities [4] for all models and all
ERPs at the respective time windows and electrodes.
These results show that dissociable cortical activities
code and compute different aspects of Bayesian updating.
However, these activities might be best described as
being Bayes optimal, implying that they reflect Bayesian
inference, modulated by non-linear probability weighting,
as originally conjectured by prospect theory [5,6].
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Table 1 Posterior model probabilities.

ERP waves and electrodes

N250 P3a P3b SW

Model C4 FCz Pz O1

OST 0.02 < 0.01 < 0.01 < 0.01

DIF 0.66 < 0.01 < 0.01 < 0.01

TOPS 0.28 < 0.01 0.88 0.82

BAY < 0.01 < 0.01 < 0.01 < 0.01

BAYS 0.04 0.99 0.12 0.18
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