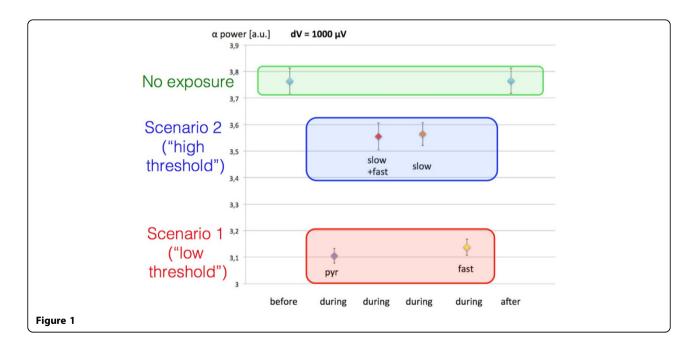
POSTER PRESENTATION

Open Access

Mechanism-based modeling of time-varying magnetic fields effects on cortical activity

Julien Modolo^{1,2,3*}, Alex W Thomas^{1,2,3}, Alexandre Legros^{1,2,3,4}


From The Twenty Third Annual Computational Neuroscience Meeting: CNS*2014 Québec City, Canada. 26-31 July 2014

Background

Understanding how extremely low-frequency (ELF, < 300 Hz) magnetic fields (MF) interact with human brain activity is an important question, especially regarding potential effects of power-lines MF (60 Hz in North America). Such knowledge is critical to 1) contribute to guidelines protecting public and workers from exposure to ELF MFs [1,2]; and 2) design novel non-invasive brain stimulation techniques using ELF MFs to interfere with pathological brain activity patterns.

Methods

We used an extensively validated neural mass model [3] describing the main neuronal populations forming a cortical column, which we extended by including 1) a time-dependent membrane potential perturbation caused by the induced electric field; 2) a model linking post-synaptic calcium concentration and synaptic plasticity processes [4]. We used increasing levels of MF flux density at 60 Hz to identify the threshold for significant effects on simulated EEG alpha (8-12 Hz) power. A

* Correspondence: jmodolo@lawsonimaging.ca

¹Human Threshold Research Group, Lawson Health Research Institute, London, ON, N6A4V2, Canada

Full list of author information is available at the end of the article

© 2014 Modolo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. 4x3x2 ANOVA for repeated measured measures was conducted on EEG alpha power before/during/after exposure, with/without 60 Hz MF exposure, with/without synaptic plasticity.

Results

Simulated EEG alpha power decreased with increased 60 Hz MF flux density (significant for $250 < dV < 500 \mu V$ when only pyramidal neurons were modulated), without significant effects from synaptic plasticity processes. If slow inhibitory interneurons [3] were also modulated, EEG alpha power decrease due to MF exposure was significantly diminished (see Figure).

Conclusions

The model will be used to 1) understand human data currently acquired in our group [5]; and 2) study *in silico* effects of transcranial alternating current stimulation and magnetic stimulation (tACS/TMS). Future work will include frequency-dependent effects from extracellular medium dielectric properties, and selective modulation of specific neuronal populations.

Acknowledgements

Lawson Health Research Institute, Mitacs Elevate Program, Hydro-Québec/ Electricité de France/Réseau de Transport d'Electricité, and Canadian Institutes of Health Research.

Authors' details

¹Human Threshold Research Group, Lawson Health Research Institute, London, ON, N6A4V2, Canada. ²Department of Medical Biophysics, Western University, London, ON, Canada. ³Department of Medical Imaging, Western University, London, ON, Canada. ⁴School of Kinesiology, Western University, London, ON, Canada.

Published: 21 July 2014

References

- ICNIRP: Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). *Health Phys* 2010, 99(6):818-836.
- IEEE: C95.6 IEEE standard for safety levels with respect to human exposure to electromagnetic fields, 0-3 kHz. *IEEE* New York; 2002.
- Wendling F, Bartolomei F, Bellanger JJ, Chauvel P: Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. *Eur J Neurosci* 2005, 22:343-356.
- Shouval HZ, Castellani GC, Blais BS, Yeung LC, Cooper LN: Converging evidence for a simplified biophysical model of synaptic plasticity. *Biol Cybern* 2002, 87:383-391.
- Legros A, Modolo J, Goulet D, Plante M, Souques M, Deschamps F, Ostigui G, Mezei G, Lambrozo J, Thomas AW: Magnetophophene perception and associated neurophysiological responses of the human central nervous system exposed to 50 and 60 Hz magnetic fields of up to 50 mT. CIGRE EMF International colloquium 2013.

doi:10.1186/1471-2202-15-S1-P116

Cite this article as: Modolo *et al.*: Mechanism-based modeling of timevarying magnetic fields effects on cortical activity. *BMC Neuroscience* 2014 **15**(Suppl 1):P116.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central