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The fluctuation scaling (FS) law has been observed in a
wide variety of phenomena. It states that the variance of
a quantity has a power function relation with the mean.
Since Taylor found it in ecological systems [1], the FS
law has been demonstrated in many natural and social
systems, showing a universality of the law [2]. In this
study, The FS law for neural spike trains is formulated
using the framework of renewal point processes.
In order to quantify the variability of neural firing, two

quantities: inter-spike interval (ISI) and spike count, are
often measured from spike trains. We first consider the
ISI statistics. Let t1, t2, . . . , tn be a sequence of spike
times, and xi = ti − ti−1(i = 2, . . . ,n) be ISIs. Let μ = E(X)
and σ 2 = Var(X) denote the mean and variance of ISI,
respectively. We consider spike trains such that under a
stationary condition σ 2 has a power function relation
with μ as

σ 2 = φμα. (1)

The scaling exponent α characterizes the ‘intrinsic’
dispersion of neuronal firing. For a Poisson (random)
process, α = 2. On the other hand, α > 2(α < 2) implies
the tendency for the timing of spikes to be over (under)
dispersed for large means, and under (over) dispersed
for small means.
Consider next the counting statistics. Let N(t,t+�] be

the number of spikes occurred in the counting window
(t, t + �]. We prove that if the spike train is a renewal
process and the interval statistics has the scaling prop-
erty (1), then the variance of N(t,t+�] per unit time is
asymptotically scaled by the mean of N(t,t+�] per unit
time (i.e., the rate) as

Var(N(t,t+�])

�
= φ

[
E(N(t,t+�])

�

]β

(2)

with β = 3− α for � >> 1.
In the presentation, I show the following two results:
The fluctuation scaling law emerges in the first-pas-

sage time to a threshold of certain diffusion processes
(i.e., integrate-and-fire models).
The likelihood function of spike trains is constructed,

based on which I propose a method for extracting the
scaling exponent from nonstationary spike trains. This
method is applied to biological spike train data to char-
acterize the variability of neuronal firing.
Possible implications of these results are discussed in

terms of characterizing intrinsic dynamics of neuronal
discharge.
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