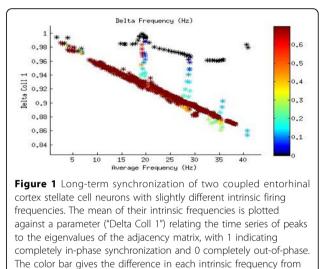
POSTER PRESENTATION

Open Access

Entorhinal cortex stellate cell synchronization


Patrick Crotty^{*}, Betty K Anderson, Mary Rose Devine, Anna Miettinen

From The Twenty Third Annual Computational Neuroscience Meeting: CNS*2014 Québec City, Canada. 26-31 July 2014

Theta-frequency oscillations (8-12 Hz) of large groups of synaptically coupled cells are commonly seen throughout the mammalian brain. The theta oscillations of entorhinal cortex grid cells and hippocampal place cells have received special attention recently due to their role they apparently play in the encoding of positional information. In a previous study [1], we found that biologically realistic computational models of two or three synaptically coupled entorhinal cortex stellate cells [2] generally synchronize their oscillations much more quickly from an initially random phase configuration if their intrinsic firing frequencies are near the theta range (with the absolute minima generally at about 15-20 Hz) than at significantly either higher or lower ranges. However, our model looked only at identical neurons with the same intrinsic frequencies and lacking any channel noise. Here we present results from further studies in which realistic channel noise and frequency heterogeneity are included. We found that channel noise could either increase or decrease the time for coupled stellate cells to synchronize by a significant amount, depending on which channel the noise was applied to. We also found that the synchronization time appears to be largely independent of the underlying cell parameters that determine the intrinsic frequencies (the persistent sodium and hyperpolarization-activated cation conductances) and depend only on the frequencies themselves, potentially simplifying the process of parameter sweeps. We found evidence that synchronization is favored for a mean firing frequency of 18 Hz even when the individual intrinsic frequencies of the neurons differ by up to about 0.5 Hz (see Figure 1). Finally, we found evidence of a bifurcation in the stability of synchronization states of two coupled identical stellate cells, with in-phase synchronization suddenly switching to out-of-phase synchronization as the synaptic coupling strength is increased, suggesting a complex picture of entorhinal

* Correspondence: pcrotty@colgate.edu

Department of Physics and Astronomy, Colgate University, NY 13346, USA

cortex synchronization patterns similar to previous studies of Hodgkin-Huxley neurons [3].

the mean (i.e., one-half their difference from each other).

Published: 21 July 2014

References

- 1. Crotty P, Lasker E, Cheng S: Constraints on the synchronization of entorhinal cortex stellate cells. *Phys Rev E* 2012, **86**:011908.
- Acker CD, Kopell N, White JA: Synchronization of strongly coupled neurons: relating network behavior to biophysics. J Comput Neurosci 2003, 15:71-90.
- Lee SG, Kim S, Kook H: Synchrony and clustering in two and three synaptically coupled Hodgkin-Huxley neurons with a time delay. Int J Bifurcations and Chaos 1997, 7(4):889-895.

doi:10.1186/1471-2202-15-S1-P93 Cite this article as: Crotty *et al.*: Entorhinal cortex stellate cell synchronization. *BMC Neuroscience* 2014 15(Suppl 1):P93.

© 2014 Crotty et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.