POSTER PRESENTATION

Open Access

A novel method for approximating equilibrium single-channel Ca²⁺ domains

Victor Matveev

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

Localized calcium (Ca^{2+}) signals control some of the most fundamental physiological processes, including synaptic transmission as well as its activity-dependent plasticity. Computational and mathematical modeling played a crucial role in the understanding of spatio-temporal Ca²⁺ dynamics that drives these processes, and showed that Ca²⁺ concentration around a single Ca²⁺ channel reaches a quasi-stationary distribution (known as the Ca²⁺ "nanodomain") within tens of microseconds after the opening of the channel, and collapses as rapidly after the closing of the channel. Such localization of Ca² ⁺ in time and space is achieved by its rapid diffusion as well as its binding to its multiple interaction partners collectively called Ca^{2+} buffers and Ca^{2+} sensors. One of the successes of mathematical modeling was the development of several analytic approximations describing the equilibrium concentration of Ca²⁺ as a function of distance from the open Ca²⁺ channel, such as the Rapid Buffering Approximation (RBA), the Linear Approximation (LA) and the Excess Buffering Approximation (EBA) [1-4]. Each of these approximations has a particular applicability parameter regime created by the interplay between the properties of Ca²⁺ buffers, in particular their mobility and Ca²⁺ binding rates, and the strength of the Ca²⁺ current. Here we present a novel approximation method which does not rely on a specific range of the relevant Ca²⁺ and buffer parameters, and is based on matching the low-distance and large-distance asymptotic behavior of the concentration function. Even at low orders, the resulting approximation is as accurate as the second-order RBA and EBA approximations [4], but its validity extends far beyond the parameter range of applicability of RBA and EBA. The usefulness of the resulting approximation is two-fold: first, together with the previously developed approximations, the novel method could provide a deeper intuition into the

Correspondence: matveev@njit.edu New Jersey Institute of Technology, NJ 07030, USA dependence of Ca^{2+} nanodomain properties on the relevant buffering parameters, and second, it constitutes an efficient numerical approximation tool in the modeling of the Ca^{2+} signals underlying presynaptic and postsynaptic phenomena.

Published: 18 December 2015

References

- Neher E: Usefulness and limitations of linear approximations to the understanding of Ca²⁺ signals. *Cell Calcium* 1998, 24(5-6):345-357.
- Smith GD, Wagner J, Keizer J: Validity of the rapid buffering approximation near a point source of calcium ions. *Biophys J* 1996, 70(6):2527-2539.
- Bertram R, Smith GD, Sherman A: Modeling study of the effects of overlapping Ca²⁺ microdomains on neurotransmitter release. *Biophys J* 1999, 76(2):735-750.
- Smith GD, Dai LX, Miura RM, Sherman A: Asymptotic analysis of buffered calcium diffusion near a point source. Siam J Appl Math 2001, 61(5):1816-1838.

doi:10.1186/1471-2202-16-S1-P162

Cite this article as: Matveev: **A novel method for approximating equilibrium single-channel Ca²⁺ domains.** *BMC Neuroscience* 2015 **16** (Suppl 1):P162.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Matveev This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.