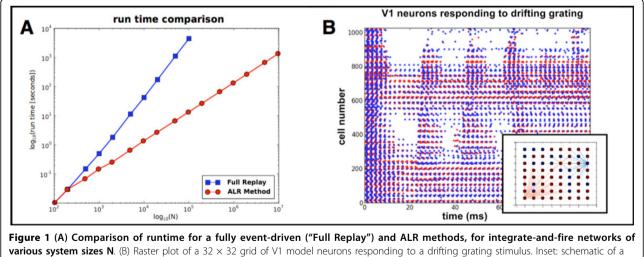
POSTER PRESENTATION

Open Access

An efficient and accurate solver for large, sparse neural networks

Roman M Stolyarov^{1,2}, Andrea K Barreiro^{1*}, Scott Norris¹


From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

The mammalian brain has about 10^{11} neurons and 10^{14} synapses, with each neuron presenting complex intracellular dynamics. The huge number of structures and interactions underlying nervous system function thus make modeling its behavior an extraordinary computational challenge. One strategy to reduce computation time in networks is to replace computationally expensive, stiff models for individual cells (such as the Hodgkin-Huxley equations and other conductance-based models) with integrate-and-fire models. Such models save time by *not* numerically resolving neural behavior during its action potential; instead, they simply detect the occurrence of an action potential, and propagate its effects to postsynaptic targets appropriately. Thus, a

complicated system of continuous ordinary differential equations is replaced with a simpler, but *discontinuous*, differential equation.

However, accurate existing methods for integrating discontinuous ordinary differential equations (ODEs) scale poorly with problem size, requiring $O(N^2)$ time steps for a system with N variables. The underlying challenge is that discontinuities introduce O(dt) errors to conventional time integration schemes, thus requiring very small time steps in the vicinity of a discontinuity [1].

In this work, we propose a method to reduce this computational load by embedding local network "repairs" within a global time-stepping scheme. In addition, highorder accuracy can be achieved without requiring the

subset of the network, with selected synapses identified and shaded by strength. Red: AMPA; orange: NMDA, blue: fast GABA.

* Correspondence: abarreiro@smu.edu

¹Department of Mathematics, Southern Methodist University, Dallas, TX, USA Full list of author information is available at the end of the article

© 2015 Stolyarov et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated. global time step to be bounded above by the minimum communication delay, as is currently required in the hybrid time-driven/event-driven scheme used by NEST [2]: this allows more powerful exploitation of exact subthreshold [3,4] and quadrature-based [5] integration schemes. If the underlying network is sufficiently sparse the algorithm, *Adaptive Localized Replay* (ALR), will attain time complexity O(N) (Figure 1A). We apply our method to a network of integrate-and-fire neurons that simulates dynamics of a small patch of primary visual cortex (Figure 1B) [5,6].

Acknowledgements

This work was supported by the SMU Hamilton Undergraduate Research Scholars Program (RS).

Authors' details

¹Department of Mathematics, Southern Methodist University, Dallas, TX, USA. ²Harvard-MIT Department of Health Sciences and Technology, Cambridge, MA, USA.

Published: 18 December 2015

References

- Shelley MJ, Tao L: Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. J Comp Neurosci 2001, 11(2):111-119.
- Gewaltig MO, Diesmann M: NEST (NEural Simulation Tool). Scholarpedia 2007, 2(4):1430.
- 3. Brette R: Exact simulation of integrate-and-fire models with synaptic conductances. *Neural Computation* 2006, **18(8)**:2004-2027.
- Morrison A, Straube S, Plesser HE, Diesmann M: Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. *Neural Computation* 2007, 19(1):47-79.
- Rangan AV, Cai D: Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J Comp Neurosci 2007, 22(1):81-100.
- Cai D, Rangan AV, McLaughlin DW: Architectural and synaptic mechanisms underlying coherent spiking activity in V1. Proceedings of the National Academy of Sciences 2005, 102(16):5868-5873.

doi:10.1186/1471-2202-16-S1-P179

Cite this article as: Stolyarov *et al*: An efficient and accurate solver for large, sparse neural networks. *BMC Neuroscience* 2015 **16**(Suppl 1):P179.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central