
POSTER PRESENTATION Open Access

An efficient and accurate solver for large, sparse
neural networks
Roman M Stolyarov1,2, Andrea K Barreiro1*, Scott Norris1

From 24th Annual Computational Neuroscience Meeting: CNS*2015
Prague, Czech Republic. 18-23 July 2015

The mammalian brain has about 1011 neurons and 1014

synapses, with each neuron presenting complex intra-
cellular dynamics. The huge number of structures and
interactions underlying nervous system function thus
make modeling its behavior an extraordinary computa-
tional challenge. One strategy to reduce computation
time in networks is to replace computationally expen-
sive, stiff models for individual cells (such as the Hodg-
kin-Huxley equations and other conductance-based
models) with integrate-and-fire models. Such models
save time by not numerically resolving neural behavior
during its action potential; instead, they simply detect
the occurrence of an action potential, and propagate its
effects to postsynaptic targets appropriately. Thus, a

complicated system of continuous ordinary differential
equations is replaced with a simpler, but discontinuous,
differential equation.
However, accurate existing methods for integrating dis-

continuous ordinary differential equations (ODEs) scale
poorly with problem size, requiring O(N2) time steps for
a system with N variables. The underlying challenge is
that discontinuities introduce O(dt) errors to conven-
tional time integration schemes, thus requiring very
small time steps in the vicinity of a discontinuity [1].
In this work, we propose a method to reduce this com-

putational load by embedding local network “repairs”
within a global time-stepping scheme. In addition, high-
order accuracy can be achieved without requiring the
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Figure 1 (A) Comparison of runtime for a fully event-driven (“Full Replay”) and ALR methods, for integrate-and-fire networks of
various system sizes N. (B) Raster plot of a 32 × 32 grid of V1 model neurons responding to a drifting grating stimulus. Inset: schematic of a
subset of the network, with selected synapses identified and shaded by strength. Red: AMPA; orange: NMDA, blue: fast GABA.
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global time step to be bounded above by the minimum
communication delay, as is currently required in the
hybrid time-driven/event-driven scheme used by NEST
[2]: this allows more powerful exploitation of exact sub-
threshold [3,4] and quadrature-based [5] integration
schemes. If the underlying network is sufficiently sparse
the algorithm, Adaptive Localized Replay (ALR), will
attain time complexity O(N) (Figure 1A). We apply our
method to a network of integrate-and-fire neurons that
simulates dynamics of a small patch of primary visual
cortex (Figure 1B) [5,6].
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