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One of the most fascinating properties of the brain is its
ability to continuously extract relevant features in a chan-
ging environment. Realizing that sensory inputs are not
perfectly reliable, this task becomes even more challen-
ging. This problem can be formalized as a filtering pro-
blem where the aim is to infer the state of a dynamically
changing hidden variable given some noisy observation.
A well-known solution to this problem is the Kalman fil-
ter for linear hidden dynamics or the extended Kalman
filter for nonlinear dynamics. On the other hand, particle
filters offer a sampling-based approach to approximate

the posterior distribution. However, it remains unclear
how these filtering algorithms may be implemented in
neural tissue. Here, we propose a neuronal dynamics
which approximates non-linear filtering.

Starting from the formal mathematical solution to the
non-linear filter problem, the Kushner equation [1], and
assuming linear and noisy observations we derive a sto-
chastic rate-based network whose activity samples the pos-
terior dynamics. We found that taking samples following
these stochastic posterior dynamics is able to solve the
inference task with a performance comparable to that of
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Figure 1 Left: A sample trajectory of the real hidden state and its filtered estimate, showing the ability of the neural filter to infer the
hidden variable. Right: For a nonlinear hidden dynamics, the neuronal filter we propose achieves an estimation error which is comparable to
that of a particle filter or an extended Kalman filter (EKF). The worst neuronal filter corresponds to our filter with a suboptimal parameter choice.
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standard particle filtering or (extended) Kalman filtering.
Indeed, for a linear hidden dynamics we exactly retrieve
the Kalman filter equations from our neural filter. In
Figure 1 we show the error of the filtered estimate as a
function of the observation noise for two different para-
meter choices in our filter equations.

Thus, the neuronal filter we propose provides an effi-
cient way to infer the state of temporally changing hidden
variables. In addition, due to the locality of the underlying
mathematical model, the filter is made biologically plausi-
ble from a neural-sampling perspective, hence providing a
possible framework for the neural sampling hypothesis [2].
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