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We were interested in exploring the use of timing or
delays in learning in neural networks. The work was
developed by wondering about the effects of glia on net-
work learning in the human brain. To investigate this
idea, we created a Multilayer Perceptron (MLP)-based
[1] feedforward model that included a signal propaga-
tion time (delay) parameter, which allowed for bit pat-
terns to be learned exactly using only signal delay
changes while keeping constant weights in simulations
implemented in Scala (top equation in Figure 1a). We
then changed the model to produce network architec-
tures with a single combined hidden-output layer, by
making the activation function a double-Gaussian and
by summing (or integrating) the squared output from
this layer in time (bottom two equations in Figure 1a).
This allows for mutual inhibition between inputs and
solution of the XOR problem. In each model, the delays
are not used to give history to the function and expand
the input space, as is common in time series prediction
using ANNs. Instead, by either explicitly (implementa-
tion of top equation of Figure 1a) or implicitly (bottom
two equations in Figure 1a) summing through time, we
allow for the possibility of using delays beyond this
input space expansion use. We show appropriately
trained DRNs (bottom equations of Figure 1a), where all
training is on the delay parameters, can successfully
classify on some standard classification datasets. In such
a feedforward context, we see that delay modifications
can have a functional equivalence to weight modifica-
tions. We propose such feedforward delay-using ANNs
as biologically more interesting ANNs that allow for

further hypothesis formation and testing of learning and
computational mechanisms in biological neural nets. We
show that the delay space size (equivalently, time to
compute a given function) has an effect on the number
of unique bit patterns that can be learned (Figure 1b)
and on the complexity of functions that can be modeled
(e.g. for classification). Though the models are still cari-
catures of biological networks, they support and suggest
a few important ideas: a) that signal propagation time
changes can serve as a mechanism for learning in biolo-
gical networks. As per our initial thoughts, these models
support the notion that glial cells might, in vivo, imple-
ment such a delay-based learning mechanism. We
believe glia have all the required mechanisms and cou-
plings for doing this, for example via activity-dependent
myelination modifications [2,3]. Also b) that the maxi-
mum waiting-time for a given region for a signal to
arrive from another determines how sensitive the
regions are to inter-region delay changes (e.g. on the
axonal tracts), and, equivalently, how complex the func-
tional coupling between the two regions can be and d)
that the models show clear tradeoffs between complexity
(or size) of a network, and the time required in comput-
ing a given function. This space-time tradeoff is akin to
the many other tradeoffs and competing optimizations
co-existing in the brain [4].
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Figure 1 A shows three different mathematical formulations implemented. Top equation is original one with which exact bit patterns were
learned, as implemented in Scala code. Bottom two equations of A were variations used in more recent work, solving XOR and classifying data.
B shows a plot of amount of bit patterns learned by a 2-3-1 DRN architecture as implemented by the top equation in A, showing the effect
of the maximum allowed delay per link/connection between two nodes (on x-axis) and the number of bits learned (average and maximum) on
the y-axis.
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