### **POSTER PRESENTATION**



**Open Access** 

# Thalamo-cortical mechanisms of the observed specific changes in frontal and occipital EEG rhythms during propofol-induce sedation

Meysam Hashemi<sup>1\*</sup>, Axel Hutt<sup>1</sup>, Jamie Sleigh<sup>2</sup>

*From* 24th Annual Computational Neuroscience Meeting: CNS\*2015 Prague, Czech Republic. 18-23 July 2015

Although general anesthesia is widely used in today's medical surgery, its precise underling mechanism is not yet clear. For clinically relevant concentration of propofol specific changes in electroencephalogram (EEG) rhythms can be observed experimentally. These characteristic changes comprised increased activity in the delta (0.5-4) Hz and alpha (8-13) Hz frequency bands over the frontal head region, but increased delta and decreased alpha activity over the occipital region [1]. The work model aims to understand the mechanisms underlying these specific changes in EEG power spectrum using a neuronal population model of a single thalamo-cortical module (Figure 1) based on a recently developed neural field model of anesthetic action [2,3]. The model reproduces well the certain changes observed experimentally in EEG rhythms over both frontal and occipital electrodes during propofol anesthesia sedation.

The power spectral analyses reveal that the alpha power originates from the cortico-thalamic relay interaction, which is associated with a constant time delay around the inverse of peak frequency in alpha band. It is shown that as the concentration of propofol increases, dependent on the potential values of the resting state of the system, it causes an increase or decrease in the gains function within the thalamo-cortical loop what then results in an increase or decrease in the spectral power in the alpha band over frontal and occipital regions, respectively. The model indicates the importance of multiple resting states in brain activity. Moreover our findings demonstrate that the emergence of delta power results from the increased GABAergic inhibition into the thalamo-cortical system.

\* Correspondence: meysam.hashemi@inria.fr

<sup>1</sup>I NRIA CR Nancy - Grand Est, Villers-les-Nancy, France

Full list of author information is available at the end of the article



Our results reveal that the specific observed changes in EEG rhythms can be reproduced with and without the propofol effect in cortical cells. This finding points out the importance of thalamus for neural effects under anesthesia sedation and simplifies the model under study. By reducing the dimensionality of the model we are able to obtain some inequality conditions for the stability of



© 2015 Hashemi et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated. the system. In addition, the analytical tractability of the model allows us to obtain further insight into the mechanisms underlying the characteristic spectral features seen during anesthesia sedation.

#### Authors' details

<sup>1</sup>I NRIA CR Nancy - Grand Est, Villers-les-Nancy, France. <sup>2</sup>Department of Anaesthetics, Waikato Hospital, Hamilton, New Zealand.

Published: 18 December 2015

#### References

- Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, et al: Tracking brain states under general anesthesia by using global coherence analysis. PNAS 2011, 108(21):8832-8837.
- 2. Hutt A: The anaesthetic propofol shifts the frequency of maximum spectral power in EEG during general anaesthesia: analytical insights from a linear model. *Front Comput Neurosci* 2013, **7**:2.
- Hashemi M, Hutt A, Sleigh J: Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci 2014, 8:232.

#### doi:10.1186/1471-2202-16-S1-P232

**Cite this article as:** Hashemi *et al.*: Thalamo-cortical mechanisms of the observed specific changes in frontal and occipital EEG rhythms during propofol-induce sedation. *BMC Neuroscience* 2015 16(Suppl 1):P232.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit