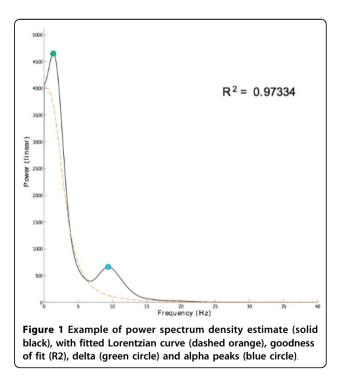
POSTER PRESENTATION

Open Access

Description and removal of background activity in EEG power spectra under general anesthesia using the Lorentzian curve

Mariia Fedotenkova^{1,2,3*}, Axel Hutt^{1,2,3}, James W Sleigh⁴

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015


General anesthesia is an important medical procedure in today's hospital practice and comprises loss of consciousness, analgesia, amnesia and immobility. Our current work analyzes patient reaction on nociception stimuli during a surgical operation and differences in this reaction provided different anesthetic drugs, propofol and desflurane. The studied dataset comprises EEGrecordings before and after incision obtained from 115 patients [1]. The task is the identification of spectral EEG signal features reflecting the incision. This analysis will reveal a possible new marker of pain during deep anesthesia.

This work considers one of the approaches to the problem, namely spectral analysis. First, power spectral density (PSD) estimates were obtained using Welch's method. It is well known that EEG power spectrum decays with higher frequencies following $\sim 1/f$ scaling [2-4]. We attribute this behavior to background activity [5], which takes place in the brain when no other activity is present. Background activity was describe by fitting regression curve $P(f) \sim a/f^{b}$ to each PSD estimate. However, the resulting goodness of fit was not satisfactory. It is due to rise of power in delta peak, which becomes prominent under general anesthesia and makes the process of curve fitting less reliable. Thus, the original model was substituted by the Lorentzian function P(f) $=a/(f^{b} + c)$, which resembles the shape of actual power spectrum quite well. Afterwards, regression curves were subtracted from each power spectrum to normalize it [3] and to analyze spectral power contained in delta and alpha peaks regardless of distinctions in patients.

* Correspondence: mariia.fedotenkova@inria.fr

 1 CNRS, Loria, UMR nº 7503, Vandœuvre-lès-Nancy, F-54500, France Full list of author information is available at the end of the article

The results of this work revealed small differences between propofol and desflurane. Power spectra of patients receiving desflurane have more regular shape than the ones from propofol group. It can also be seen that delta power remains more consistent, while alpha power varies greatly from patient to patient. Another result of this work is a trend in the distribution of Lorentzian curve parameters: the set of parameters remains compact for small values of b, but a and c scatters significantly when b (which corresponds to steepness of curve) is larger than three. Results of this work provide

© 2015 Fedotenkova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

insights on underlying background activity. However, they do not allow to distinguish between pre- and postincision and poorly between propofol and desflurane. This problem requires more complicated techniques. Future work will expand spectral analysis with time information (time-frequency representations) and investigate time structure by means of recurrence analysis.

Authors' details

¹CNRS, Loria, UMR nº 7503, Vandœuvre-lès-Nancy, F-54500, France. ²NEUROSYS team, Inria, Villers-lès-Nancy, F-54600, France. ³Université de Lorraine, Loria, UMR nº 7503, Vandœuvre-lès-Nancy, France. ⁴Department of Anesthesia, Waikato Clinical School of the University of Auckland, Waikato Hospital, Hamilton 3206, New Zealand.

Published: 18 December 2015

References

- Sleigh JW, Leslie K, Voss L: The effect of skin incision on the electroencephalogram during general anesthesia maintained with propofol or desflurane. *Journal of Clinical Monitoring and Computing* 2010, 24(4):307-318.
- Bédard C, Destexhe A: Macroscopic Models of Local Field Potentials and the Apparent 1/f Noise in Brain Activity. *Biophysical Journal* 2009, 96(7):2589-2603.
- Hutt A, Frank TD: Critical fluctuations and 1/f α-activity of neural fields involving transmission delays. Acta Phys Pol A 2005, 108:1021-1040.
- Demanuele C, James CJ, Sonuga-Barke EJ: Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals. *Behavioral and Brain Functions* 2007, 3:62.
- Freeman WJ, Zhai J: Simulated power spectral density (PSD) of background electrocorticogram (ECoG). *Cognitive Neurodynamics* 2009, 3(1):97-103.

doi:10.1186/1471-2202-16-S1-P233

Cite this article as: Fedotenkova *et al.*: **Description and removal of background activity in EEG power spectra under general anesthesia using the Lorentzian curve.** *BMC Neuroscience* 2015 **16**(Suppl 1):P233.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central