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In biological neural networks, it is widely accepted that the
spikes are the fundamental building blocks of information
representation [1]. In contrast, whether such building
blocks exist at a higher level in terms of time and in a
population of neurons is a topic of ongoing debate. One
approach for finding candidates for such building blocks is
to seek for frequently appearing spike patterns in a popula-
tion. These sequences are often called spatio-temporal pat-
terns, cell assemblies, or unitary events [2-4]. They could
metaphorically be considered as an “alphabet’’ of neural
information processing [5,6]. Some patterns have already
been found and are related to functional roles such as
memory consolidation and gating of sensory inputs [7,8].
One difficulty in finding spatio-temporal patterns arises

from observed spike trains being a superposition of multi-
ple patterns. In signal processing, one commonly used
method for decomposing the signal into patterns is dic-
tionary learning for sparse coding [9-11]. Sparse coding
expresses the input signal as a linear combination of a few
template vectors taken from a matrix called a dictionary
or codebook. In terms of linear algebra, sparse coding cor-
responds to finding a sparse vector x, which fulfills y = Dx,
where y is the observed signal vector and D is a dictionary.
When the dimension of × is much larger than that of y, it
is possible to find sparse x. Each column of D is called an
atom, which represents a template vector. A good diction-
ary decomposes the most of the observed signals into a
small set of template vectors. In other words, D must spar-
sify not just one input vector y but many others as well.
This is represented by using matrix Y whose column vec-
tors are observed signals. In this case, sparse coding is
represented by equation Y = DX. The goal is to find sparse
matrix × given Y and D. Whether input matrix Y can be
transformed into sparse × or not depends on dictionary D.

The goodness of D depends on Y. The task of finding opti-
mal D given Y is called dictionary learning. In this work
sparse coding and dictionary learning were applied for
finding spatio-temporal patterns from multivariate spike
trains. Spike trains were transformed to vectors using bin-
ning, that is, converted to vectors of short-time firing
rates. The methods were tested using different bin sizes.
The results obtained for biological data showed possible
candidates of spatio-temporal patterns in neural activity.
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