POSTER PRESENTATION

Open Access

Lateral connections synchronize population activity in a spiking neural network model of midbrain superior colliculus

Bahadir Kasap^{*}, John van Opstal

From 24th Annual Computational Neuroscience Meeting: CNS*2015 Prague, Czech Republic. 18-23 July 2015

Saccades are rapid and ballistic eye-head gaze shifts between points of interest in the visual field. They are crucial for gathering high-resolution visual information. The midbrain superior colliculus (SC) generates saccadic eyemovement commands for downstream oculomotor circuits. It contains an eye-centered, gaze-motor map that relates the location of a Gaussian-shaped neural population to the intended movement vector. The gaze-motor map mediates the spatiotemporal transformation for eyehead orienting gaze shifts to peripheral targets [1]. Electrophysiological recordings have shown that SC neurons exhibit some remarkable activity properties that depend on both their anatomical position and the resulting saccade trajectory [2].

Here, we propose a biologically plausible spiking neural network model that is constrained by the observed firing patterns of real SC neurons for visually evoked saccades. The functional two-dimensional network model reproduces the spike trains of single neurons in recorded SC populations for saccades with different amplitudes and directions.

The network model consists of a 2D grid of neurons, representing the gaze-motor map. The adaptive integrateand-fire neurons [3] portray the observed site-dependent bursting profiles of individual SC neurons through distinct intrinsic biophysical properties, whereas Mexican-hat shaped lateral connections ensure the observed synchronized population activity by a soft winner-takes-all mechanism.

We argue that our model offers a basis for neuronal algorithms of spatiotemporal transformations and bioinspired optimal control signal generators.

* Correspondence: b.kasap@donders.ru.nl

Donders Institute for Brain, Cognition and Behaviour; Dept. Biophysics, Radboud University Nijmegen, Nijmegen, the Netherlands

Acknowledgements

This work is funded by the European Commission through FP7 Marie Curie ITN project "NETT" (Grant nr. 289146) (BK) and the Radboud University Nijmegen (AvO).

Published: 18 December 2015

References

- Ottes FP, van Gisbergen JAM, Eggermont JJ: Visuomotor fields of the superior colliculus: a quantitative model. Vision Research 1986, 26(6):857-873.
- Goossens HHLM, van Opstal AJ: Optimal control of saccades by spatialtemporal activity patterns in the monkey superior colliculus. *PLoS Computational Biology* 2012, 8(5):e1002508.
- Brette R, Gerstner W: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. *Journal of Neurophysiology* 2005, 94(5):3637-3642.

doi:10.1186/1471-2202-16-S1-P273

Cite this article as: Kasap and van Opstal: Lateral connections synchronize population activity in a spiking neural network model of midbrain superior colliculus. *BMC Neuroscience* 2015 16(Suppl 1):P273.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2015 Kasap and van Opstal This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.