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Surprise is informative because it drives attention and
modifies learning. Not only has it been described at differ-
ent stages of neural processing [1], but it is a central con-
cept in higher levels of abstraction such as learning and
memory formation [2]. Several methods, including Baye-
sian and information theoretical approaches, have been
used to quantify surprise. In Bayesian surprise, only data
observations which substantially affect the observer’s
beliefs yield surprise [3,4]. In Shannon surprise, however,
observations that are rare or less likely to happen are con-
sidered surprising [5]. Although each of the existing mea-
sures partly incorporates conceptual aspects of surprise,
they still suffer from some drawbacks including implausi-
bility from the view point of neural implementation.

We first review the two probability-based surprise mea-
sures above, and discuss their pros. We then propose a
novel measure for calculating surprise which benefits
from the advantages of both measures. Importantly, the
proposed measure benefits from calculating surprise dur-
ing learning phase (e.g., inference about parameters in
Bayesian framework). This is in contrast to Bayesian sur-
prise where the surprise calculation is not prior to the
inference step. Our proposed method can also be neu-
rally implemented in a feed-forward neural network.

Furthermore, we propose a principle of (future) sur-
prise minimization as a learning strategy; that is if some-
thing unexpected (surprising) happens, the subjective
internal model of the external world should be modified
such that the same observation becomes less surprising if
it happens again in the not so distant future. We mathe-
matically describe a class of learning rules which obey
that principle. We show that standard Bayesian updating
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and the likelihood maximization technique both belong
to such class. It accredits usage of well-known inference
techniques in frequentist and Bayesian frameworks from
a novel perspective. As a consequence, we propose a
modified Bayesian method for updating beliefs about the
world. This learning rule also obeys the principle of sur-
prise minimization. In this method, the influence of the
likelihood term on the posterior belief can be controlled
by a subjective parameter. We apply this technique to
learning within changing environments. Modified Baye-
sian updating helps the learning agent to actively control
the influence of new information on learning environ-
ments. As a result, the agent quickly adapts to the chan-
ging environments.
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