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Abstract
Background:  Chemical methods of transfection that have proven successful with cell lines  often
do not work with primary cultures of neurons. Recent data, however,  suggest that linear polymers
of the cation polyethyleneimine (PEI) can  facilitate the uptake of nucleic acids by neurons.
Consequently, we examined  the ability of a commercial PEI preparation to allow the introduction
of  foreign genes into postmitotic mammalian neurons. Sympathetic neurons were  obtained from
perinatal rat pups and maintained for 5 days in vitro in  the absence of nonneuronal cells. Cultures
were then transfected with varying  amounts of a plasmid encoding either E. coli β-galactosidase or
enhanced green fluorescence protein (EGFP) using PEI.

Results:  Optimal transfection efficiency was observed with 1 µg/ml of plasmid  DNA and 5 µg/ml
PEI. Expression of β-galactosidase was both rapid and  stable, beginning within 6 hours and lasting
for at least 21 days. A maximum  yield was obtained within 72 hours with ∼ 9% of the neurons
expressing  β-galactosidase, as assessed by both histochemistry and antibody staining.
Cotransfection of two plasmids encoding reporter genes was achieved.  Postmitotic neurons from
adult human retinal cultures also demonstrated an  ability to take up and express foreign DNA
using PEI as a vector.

Conclusions:  These data suggest that PEI is a useful agent for the stable expression of  plasmid-
encoded genes in neuronal cultures.

Background
Although intense efforts are being directed toward the

development of safe  and effective viral vectors that per-

mit the introduction of foreign genes into  mammalian

cells, chemical transfection continues to attract interest,

not only  because chemicals are less difficult to use from

a technical standpoint, but  also because this form of

gene transfer may prove less toxic and immunogenic

from a therapeutic perspective [1]. Synthetic vectors  in-

clude cationic polymers such as polyethyleneimine (PEI)

and polylysine, as  well as cationic lipids such as Lipo-

fectamine [2] and  negatively charged liposomes [3]. The
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unique chemical  properties of PEI underscore its poten-

tial as a vector for gene delivery. For  example, PEI has a

very high cationic charge density, making it useful for

binding anionic DNA within the physiological pH range

[4]  and forcing the DNA to form condensates small

enough to be effectively  endocytosed [5], which is the

primary mode of the PEI/DNA  complex into the cell
[1,6,7]. Via the endosomal compartment, PEI/DNA com-

plexes travel to  the nucleus, whereupon the plasmid

DNA is expressed within 5 hours after the  initial attach-

ment of the complexes to the cell surface [7]. Another

property of PEI that makes it suitable as a DNA vector is

its  structure, in which every third atom is a protonatable

amino nitrogen that  allows the polymer to function as an

effective buffering system for the sudden  decrease in pH

from the extracellular environment to the endosomal/

lysosomal  compartment. This feature is important for

the protection of genetic material  as it travels to the nu-

cleus [4,7].

Over 30 cell lines have been successfully transfected us-

ing PEI, including  COS-7 cells [8], rat hepatocytes [3],

human dendritic cells [9,10],  and mouse mammary epi-

thelial cells [11]. Especially  exciting is the ability of PEI

Figure 1
Rat sympathetic neurons express β-galactosidase and EGFP genes  transfected using PEI. (A) and (B) show a transfected neuron
stained with X-gal  10 d after introduction of plasmid taken at low and high magnification,  respectively. In (A), note the exten-
sive spread of β-galactosidase  throughout the neuronal processes, including growth cones. In (B), note the  non-transfected
cell immediately adjacent to the soma of the β-gal+ neuron (arrow). (C) shows a neuron stained with a monoclonal antibody
to β-galactosidase next to two nontransfected cells (arrows). An EGFP+ neuron is shown in (D). Note the distribution of EGFP
throughout the  neurites in (D). Scale bar = 80 µm in (A), 20 m in (B), 40 µm in (C)  and (D).
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to introduce foreign genetic material into fully  differen-

tiated, postmitotic cells in vitro. Such examples include

mouse myotubes [2] and chick embryonic neurons [4].

Lambert et al. [12] also  demonstrated PEI-mediated up-

take of nucleic acids in rat sympathetic  neuronal/glial

cocultures in serum-supplemented media. In this report,

we  describe the application of PEI in the transfection of

postmitotic rat  sympathetic neurons in serum-free, glia-

free conditions, thereby showing the  capability of PEI as

a method for studying the effects of targeted genetic  ma-
nipulation in a rigorously defined cell culture system. In

addition, we show  that foreign genetic material can also

be introduced into human retinal neurons  that are dec-

ades old.

Results
Expression of β-galactosidase in SCG neurons
Transfection conditions were optimized using cultures of

postmitotic  sympathetic neurons that had been treated

with a DNA synthesis inhibitor to  remove nonneuronal

cells. Neurons were transfected on the fifth day in  vitro.

Three days after transfection, β-galactosidase (β-gal) ac-

tivity  was detected in a subpopulation of sympathetic

neurons (Figure  1A and 1B). Labeling was present in

both the soma  and processes. Labeled axons could be

followed for many millimeters, and growth  cones were

consistently labeled. β-gal protein could also be detected

using immunocytochemical methods, and the labeling

pattern was identical to  that detected using X-gal (Fig-

ure 1C). Another gene that  is commonly used to identify

transfected cells, EGFP, was also successfully  intro-

duced into sympathetic neurons using PEI (Figure 1D ).

As with β-gal, EGFP was detected throughout the neu-

rons, including  synaptic varicosities and growth cones.

Pretreatment of our cultures with cytosine-D-arabino-
furanoside prior to  transfection almost completely elim-

inates the presence of nonneuronal cells  [13]. To further

demonstrate that the transfected cells  in our cultures are

neurons, we transfected cultures with the plasmid en-

coding  EGFP, and then immunostained them using an

antibody for microtubule-associated  protein 2 (MAP2),

a neuron-specific marker. Ninety-five out of 100 EGFP+

cells were also MAP2+ (Figure 2),  indicating that the

vast majority of transfected cells in our cultures are  neu-

rons. Those few cells that expressed EGFP but not MAP2

possessed a clearly  distinct morphology from the neu-

rons, such as smaller size and shorter  processes, and

thus were easily distinguished from neurons in subse-

quent  experiments.

Figure 2
Cells transfected with PEI are primarily neurons. Cells were cultured  as described in "Methods." On the fifth day in vitro, cul-
tures were  transfected with the plasmid encoding EGFP. Eight days later, the cultures were  immunostained with an antibody
to the neuronal marker MAP2. (A) shows a cluster  of three cells, with the one on the right expressing EGFP (green). (B)  indi-
cates that the cells in (A) are MAP2+ (red). Scale bar = 20  µm.
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Transfection efficiency is dependent on DNA: PEI ratio 
and  concentration
Consistent with previous results [4,8,9,15,16,], we found

that the β-gal transfection efficiency varied according to

the ratio of DNA to PEI (Figure 3). Peak  yield was ob-

served at a ratio of 1 µg plasmid DNA to 5 µg PEI  (con-

centration of PEI stock is 1 µg/µl) in 1 ml culture media,

producing ∼ 9% transfected cells. As the number of pro-

tonatable nitrogens  on the linear 22 kD ExGen 500 PEI

polymer at physiological pH is roughly equal  to 5.47

nmol per µg PEI, and 1 µg DNA corresponds to 3 nmol

phosphate  groups, this means that the peak yield ob-
served was at a PEI nitrogen: DNA  phosphate (N/P) ra-

tio of ∼ 9. Thus, the most suitable N/P ratio for in vitro

sympathetic neurons appears to be around 9, creating

positively  charged DNA/PEI complexes [17].

The percentage of β-gal+ neurons varied according to the

total amount of DNA/PEI complex added to the cultures.

Keeping the 1: 5 DNA:  PEI ratio constant, lower yields

were obtained at 0.2: 1 and 0.5: 2.5 DNA: PEI  (Figure 4).

Toxicity increased at higher overall amounts  of DNA/

PEI (Figure 5).

Kinetics of foreign gene expression
Sympathetic neurons were transfected with β-gal plas-

mid and PEI (1  µg: 5 µg ratio). At various times thereaf-

ter (6 h, 1 d, 3 d, 5 d, 10  d, 21 d), cells were fixed and

assayed for the presence of β-galactosidase  activity. β-
gal+ neurons were detected as soon as 6 h  post-transfec-

tion (Figure 6), a finding consistent with  previous work

[7]. A maximum of ∼ 9% β-gal+ neurons were observed at

3 d post-transfection with 1: 5 DNA: PEI,  followed by a

progressive decrease from 3 d to 10 d. During this time,

many  β-gal+ neurons appeared to either die or cease ex-

pression of  the foreign gene. However, the percent of

cells expressing β-galactosidase  at 10 d (4.8%) was sim-

ilar to the percent at 21 d (4.7%). This suggests that  the

neurons that still expressed β-galactosidase by 10 d con-

tinued to do so through 21 d. Therefore, PEI-mediated β-

gal expression in a certain  percent of neurons is persist-

ent.

Co-transfection of β-gal, EGFP
To determine how efficiently co-transfection occurred

with PEI, we used  β-gal and EGFP together in a 1: 1 ratio,

with the overall DNA: PEI ratio  at 2 µg plasmid DNA: 5

µg PEI/ml culture media. Neurons expressing  EGFP

Figure 3
Transfection efficiency depends on the DNA: PEI ratio. Rat
sympathetic  neurons were cultured in 12-well plates and
transfected as described in  "Methods." Various ratios of µg
DNA to µg PEI (0.2, 0.4, 0.6) were  used, as well as DNA
alone (2 µg) and PEI alone (5 µg). Three days  post-transfec-
tion, cells were fixed and stained with X-gal. The number of
cells  expressing the plasmid encoding for β-galactosidase
(LacZ+) was  counted and expressed as a % of total cells
scored (N>500). Data are  expressed as the mean of three
separate wells ± SEM.

Figure 4
Efficiency of PEI-mediated gene transfer is dose-dependent.
On the  fifth day in vitro, sympathetic neurons were trans-
fected with 0.2: 1,  0.5: 2.5, or 1: 5 µg DNA: µg PEI. Three
days later, cells were fixed  and stained with X-gal. Neurons
expressing the plasmid encoding for  β-galactosidase (LacZ+)
were counted and expressed as a % of  total cells scored
(N=500). Data are expressed as the mean of three separate
wells ± SEM.
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were also found to express β-galactosidase (Figure 7). 23

out of 24 transfected neurons examined clearly demon-

strated  expression of both plasmids, indicating that co-
transfections are reliable  using this method.

PEI-mediated transfection in cultured human retinal gan-
glion  cells
Cultures of cells dissociated from adult human retina

were transfected with  plasmid encoding EGFP after 1-4

weeks in vitro using the same protocol  developed for

sympathetic neurons. A variety of cells were transfected,

most  notably glia (Figure 8A). Smaller, process-bearing

cells  expressing EGFP were also detected (Figures 8A

and 8B); these cells possess a morphology that strongly

suggests a neuronal origin. Similar types of cells were

able to express the β-gal  plasmid as well (not shown).

Discussion
Our data demonstrate the utility of polyethyleneimine as

a vector for  exogenous gene delivery in cultured neu-

rons. Although the sources of the  neurons varied widely

in age and species, PEI was nonetheless able to  facilitate

the expression of at least two foreign genes, LacZ and

EGFP, in each  of the experimental settings. This finding

underscores the versatility of PEI  as a method for intro-

ducing genes into postmitotic populations of cells,  par-

ticularly as our previous efforts to transfect sympathetic

neurons using  lipid-based reagents (Lipofectamine and

Lipofectin) had been unsuccessful.

From a technical standpoint, PEI is relatively straight-

forward, as  commercial preparations are sterile and

ready for use. There are, however,  important factors to

consider while striving for optimal results. The first is

maximizing yield and minimizing toxicity. Although the

reasons for PEI toxicity  are not completely clear, it ap-

pears to involve the disruption of the  endosome/lyso-

some complex [4, 6].  In our experimental conditions,

the optimal density for transfection of rat  sympathetic

neurons is around 30 neurons/mm2, in contrast to a
typical culture density of 10 neurons/mm2 [13]. This al-

lows for sufficient numbers of transfected cells and ap-

pears to  lessen the PEI burden per neuron, yet does not

preclude detailed morphological  analyses of individual

neurons. Another factor is the presence of serum. Based

Figure 5
Toxicity of PEI-mediated gene transfer is dose-dependent.
On the fifth  day in vitro, sympathetic neurons were counted
on an inverted  phase-contrast microscope (20x) and the
total number in each well was estimated  from a random
sampling of 20 microscopic fields per well. Cells were then
transfected with 0.2: 1, 0.5: 2.5, or 1: 5 µg DNA: µg PEI.
Three days  later, cells were fixed and counted again, pairing
the post-transfection cell  number in a well with its corre-
sponding pre-transfection number. Data are  expressed as
the mean % cells surviving transfection of three separate
wells  ± SEM.

Figure 6
Kinetics of PEI-mediated transfection. Perinatal rat sympa-
thetic  neurons were transfected with 1 µg LacZ plasmid and
5 µg PEI after  five days in vitro. At various times following
transfection (0.25, 1,  3, 5, 10, and 21 d) cells were fixed and
assayed as to the presence of  β-galactosidase using X-gal his-
tochemistry. The % neurons expressing  β-galactosidase
(LacZ+) were determined by counting 500 cells  per well and
expressing the data points as mean % LacZ+ neurons of
three separate wells ± SEM.
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on our unpublished observations, rat sympathetic neu-

rons that are transfected  in the absence of serum show

much greater toxicity than those in which 2.5%  serum is

temporarily added for the transfection process (data not
shown).  Furthermore, the presence of serum does not

seem to greatly interfere with the  transfection process of

either rat sympathetic or human retinal neurons,  al-

though in other cell types it sometimes does [18,19].

Rinsing the cultures immediately after  centrifugation is

also a critical step in mitigating the toxic effects of PEI.

Increasing the number and volume of rinses improves

cell survival, but  decreases the yield of transfected cells

(data not shown). Clearly, such  parameters must be tai-

lored to the specific type of cell under  investigation.

Altering the ratio of DNA to PEI also affects the yield. In

our neuronal  cultures it appears that the DNA: PEI ratio

of 1 µg: 5 µg, or 0.2,  which produces complexes that bear

a net positive charge, produces the highest  yield. This is

in contrast to previously published data showing that

positively  charged complexes and neutral complexes

produce comparable yields in lung  epithelial cells [17].

However, considering that the  optimal DNA: PEI ratio

may vary from cell line to cell line [19], this is not an un-

expected finding.

Perhaps the most attractive aspect of PEI-mediated gene

delivery is the  flexibility of the method. For example, a

DNA/PEI ratio of 0.4 also produces  reasonable numbers
of transfected neurons in our system, meaning that the

measurement of the DNA and PEI solutions need not be

rigorously accurate for  the transfection process to work.

The applications can vary greatly, as well.  PEI may be

used in conjunction with adenovirus vectors

[2,9,11,18,19] and can be conjugated to various ligands

for  targeted gene delivery [10,16]  or to minimize non-

specific interactions with blood when injected into the

circulatory system [20]. It also has been shown to be  ef-

fective as a vector for in vivo transfection in the mouse

brain  [21,22] and lung [17,21], as well as a potential way

to target therapeutic genes to tumors [20].

Our results confirm the findings of others that show the

possibility of  transfecting post-mitotic, fully differenti-

ated cells using PEI [2,23]. In addition, we show that

adult human retinal neurons, which have been fully dif-

ferentiated as long as seven decades,  are capable of ex-

pressing foreign genes when administered in this

manner. As  the eye is considered to be the most accessi-

ble part of the central nervous  system, any method of

gene transfer that works on human retinal neurons in

vitro presents an attractive avenue of research for poten-

tial in  vivo applications.

Figure 7
Co-transfection of SCG neurons using PEI. Neurons cultured
from  perinatal rat SCG were transfected with 1 µg LacZ, 1
µg EGFP, and 5  µg PEI on the fifth day in vitro. Three days
later, cells were  fixed and immunostained using a mono-
clonal antibody to β-galactosidase  with a rhodamine-conju-
gated secondary antibody. Panel (A) shows a  phase-contrast
image of two neurons stuck together. The neuron on the left
in  (A) is expressing β-galactosidase (B) as well as EGFP (C).
Scale bar = 20  m.
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Materials and Methods
Tissue Culture
Sympathetic neuronal cultures were obtained by dissoci-

ating superior  cervical ganglia from perinatal (21 day

embryos to 1 day postnatal) Holtzman  rats (Harlan

Sprague-Dawley, Indianapolis), using previously de-

scribed methods  [13]. Neurons were plated at ∼ 30 cells/

mm2 onto coverslips coated with poly-D-lysine (200 µg/

ml). Cultures  were maintained in a serum-free medium

[13] containing  β-nerve growth factor (β-NGF, 100 ng/

ml). In order to eliminate  nonneuronal cells, cultures

were treated with the DNA synthesis inhibitor  cytosine-

β-D-arabinofuranoside (2 µM) for 48 h beginning on day

2.

Adult human donor eye tissue was obtained postmortem

from Upstate New York  Transplant Services (Buffalo,

NY) with approval from the Health Sciences  Institution-

al Review Board. Familial consent for donation and re-

search was also  obtained. Tissue was rejected if

harvesting did not occur within 7 hours  postmortem and

48 hours of storage on ice, or if the donor had a history of

eye  disease. Dissociated human retinal cultures were de-

rived from adult donor  tissue using a protocol adapted

from goldfish retinal explant studies [14]. Retinal iso-

lates were diced into 0.3 × 0.3 mm pieces  using a tissue

chopper (Brinkman Instruments, Westbury, NY), fol-

lowed by  sequential treatment with 0.1% hyaluronidase/

0.05% collagenase and 0.25%  trypsin (GIBCO, Grand

Island, NY) in Ca2+/Mg2+-free HBSS.  After several rins-

ing/centrifugation cycles, a flame-polished pipette was

used  to dissociate the cells. Cells were then pelleted, re-

suspended, and plated onto  18 mm glass coverslips coat-

ed with poly-D-lysine (100 µg/ml) and laminin  (10 µg/

ml). Culture medium consisted of 1:1 DMEM/F12 sup-

plemented with 10%  FCS, insulin (10 µg/ml), transferrin

(20 µg/ml), 0.1 units/ml  penicillin, and 0.1 µg/ml strep-

tomycin.

Transfection
Transfection took place on the fifth day in vitro for sym-

pathetic  neurons, 1-4 weeks in vitro for retinal cultures.

Sympathetic neurons  were treated with 2.5% fetal calf

serum immediately prior to transfection. The  total vol-

ume of media in each 20 mm well was ∼ 1 ml. The two

plasmids  used encoded either a 1.6 Kb β-galactosidase

gene sequence from E.  coli or the enhanced green fluo-

rescence protein (EGFP) gene (Calbiochem,  Palo Alto),

and were purified by the CsCl method. Various concen-

trations of  plasmid and PEI (ExGen 500, MBI Fermen-

tas, Hanover, MD) were prepared, using  150 mM NaCl

in sterile water as the diluent. PEI and plasmid were

mixed  together and incubated for 10 minutes at room

temperature to allow for adequate  binding of the plas-

mid to the PEI. One hundred µl of plasmid: PEI solution

was added to each 20 mm well and the 12 well plate was

centrifuged at 500 x g for 5 min. After centrifugation, the

cultures were washed once with 0.5  ml DMEM, treated

with 0.5 ml serum-free media containing 0.1 units/ml

penicillin and 0.1 µg/ml streptomycin, and returned to

the incubator.

X-gal staining
Detection of enzymatic activity within cells transfected

with the  β-galactosidase gene was similar to that de-
scribed by Galileo et al.  [15]. Briefly, cells were fixed for

Figure 8
In vitro adult human donor retinal cells can be transfected
using PEI. (A) and (B) show grayscale confocal microscopic
images of retinal  cells expressing EGFP. The two large cells
to the right in (A) are glia, most  likely astrocytes; the proc-
ess-bearing cells on the left in (A) and in (B) are  neurons.
Scale bar = 17 µm in (A); 10 µm in (B).
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20 minutes in 4%  paraformaldehyde. After rinsing with

PBS, cells were incubated in the dark (20  h at 37°C) in a

buffer containing X-gal substrate (1 mg/ml), potassium

ferricyanide (100 mM), and potassium ferrocyanide (100
mM). Coverslips were  washed in PBS and mounted on

slides using an elvanol-based medium [13].

Immunocytochemistry
Cultures were fixed in 4% paraformaldehyde for 20 min-

utes. Cells were then  permeablilized in 0.1% Triton in

PBS for 3 minutes and blocked in a 10% goat  serum, 5%

bovine serum solution for 20 minutes. Mouse mono-

clonal Ab 5B88 to  β-galactosidase (GIBCO) was used at

a concentration of 2.5 g/ml, followed  by rhodamine-con-

jugated, affinity-purified goat anti-mouse IgG antibody

(Boehringer Mannheim, Indianapolis, IN). Mouse mon-

oclonal Ab SMI52 to  microtubule-associated protein 2

(Sternberger Monoclonals, Baltimore, MD) was  used at

a concentration of 2 µg/ml, followed by the rhodamine

goat  anti-mouse secondary.
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