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Abstract
Background: Disrupting neural migration with bilateral focal freezing necrosis on postnatal day 1
(P1) results in the formation of 4-layered microgyria. This developmental injury triggers a pervasive
neural reorganization, which is evident at the electrophysiological, behavioral, and anatomical
levels. In this experiment, we investigated changes in brain weight as an index of global disruption
of neural systems caused by focal damage to the developing cortical plate.

Results: We found a dramatic reduction in overall brain weight in microgyric subjects. This
reduction in brain weight among animals with microgyria is reflected in decreased total brain
volume, with a disproportionate decrease in neocortical volume. This effect is so robust that it is
seen across varied environments, at variable ages, and across the sexes.

Conclusions: This finding supports previous work suggesting that substantial reorganization of the
brain is triggered by the induction of bilateral freezing damage. These results have critical
implications for the profound re-organizational effects of relatively small focal injuries early in
development to distributed systems throughout the brain, and particularly in the cerebral cortex.

Background
Focal damage to the developing brain can have wide-
spread consequences for structures and regions that
project to or receive direct or even indirect projections
from the damaged area [1–3]. Focal neocortical malfor-
mations induced by freeze injury to the developing corti-
cal plate exemplify this fact. It has been shown that these
malformations, resembling human microgyria, are associ-
ated with widespread disturbances in neuronal organiza-
tion[4,5]. For example, brain slices containing microgyric
cortex show increased epileptogenic activity [6–9]. Micro-
gyric anomalies are also associated with connectional

alterations [10–12], affecting both thalamic and cortico-
cortical connectivity. In addition, changes in neuronal cell
size distribution in the medial geniculate nuclei associ-
ated with the presence of neocortical malformations, have
been demonstrated in both human dyslexic brains[13]
and rat brains [14–16].

Along with these structural alterations, damage to the
developing brain produces functional changes[1], sug-
gesting that structural changes are not necessarily mala-
daptive in all cases. For example, the presence of
neocortical malformations in certain strains of inbred
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mice are correlated with better performance on tasks of
spatial reference memory[17,18]. On the other hand,
induced microgyric animals show a variety of behavioral
deficits that suggest disturbances to multiple brain sys-
tems [15,19–22]. Rapid auditory processing deficits have
been found in males with induced microgyria using both
an operant condition paradigm and a reflex modification
paradigm [15,19–21]. In both paradigms, auditory
processing deficits were found only on rapidly changing
stimuli, and not when these same stimuli were delivered
at slower rates. Further, animals with induced microgyria
showed poorer performance in discrimination learning
and took longer paths to the target in the Morris Water
Maze than sham littermates[22].

The extent of brain-wide changes induced by the relatively
restricted freezing lesion that produces microgyria is,
however, unknown. Here we present evidence that
induced bilateral focal microgyria leads to significant
reductions in overall brain weight that are quite robust,
being seen at all ages measured (P30 – P118), in both
males and females, and are unaffected by acoustic rearing
experiences. Moreover, volumetric analysis suggests this

reduction largely reflects a disproportionate decrease of
neocortical tissue.

Results
Histological analysis confirmed the presence of bilateral
microgyria in all subjects exposed to the P1 freezing lesion
treatment (Figure 1). Malformations were located in som-
atosensory-related cortex (SM-I) including regions Par1,
Par2, HL, and FL[23]. No malformations were seen in any
sham subject.

The present experiment was comprised of three studies
(see Methods for complete details). Study 1 examined the
effect of rearing in three different acoustic Environments
(enriched, deprived, and control). The effect of Age (P30,
P52, P83) was investigated in Study 2, while the effect of
Sex was assessed in Study 3.

Body Weight Analysis
Differences in body weight within each study were exam-
ined by analysis of variance (ANOVA; see Table 1). In
Study 1, there was a significant effect of rearing condition
(F2,34 = 18.1, P < .001), with animals in the enriched con-
dition having significantly smaller body weights than

Low power photomicrograph of a Wistar rat brain with bilateral microgyria (arrows)Figure 1
Low power photomicrograph of a Wistar rat brain with bilateral microgyria (arrows). Note the normal-appearing cortex 
medial and lateral to the microgyria. Bar = 800 µm.
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subjects in either of the other two groups. There were no
other significant main effects or interactions. For Study 2,
there was the expected highly significant effect of Age
(F2,50 = 508.6, P < .001), but no other significant effects.
There was also an expected effect of Sex in Study 3, with
females weighing significantly less than males (F1,36 =
685.2, P < .001); there were no other significant effects.
Due to the significant main effects of body weight in these
studies, we regressed out the effects of body weight on all
subsequent analyses.

Brain Weight Analyses
Brain weight measures were regressed against body
weight, and the residuals were used as the dependent
measure in an ANOVA (see Table 2). Study 1 showed a
highly significant effect of Lesion (F 1,34 = 30.83; p <
0.001), reflecting a decreased brain weight in microgyric
subjects compared to shams across environments (Figure
2A). There was no interaction with Environment (F 2,34 <
1), nor main effect of Environment (F 2,34 = 1.50; ns).
Study 2 also showed a highly significant effect of Lesion (F

1,50 = 48.43; p < 0.001), with the presence of microgyric
lesion associated with decreased brain weight (Figure 2B).
There was no main effect of Age (F 2,50 = 1.03; NS; the
effects of body size differences having been regressed out)
nor was there a significant interaction between main
effects (F 2,50 < 1). In Study 3, Lesion once again had a sig-
nificant effect on brain weight (F 1,36 = 8.86; p < 0.01),
with microgyric lesions associated with decreased overall
brain weight (Figure 2C). There was no Lesion × Sex inter-
action (F 2,36 < 1), nor main effect of Sex (F 1,36 <1).

Brain Volume Analyses
In an attempt to localize the effects of microgyric lesions
on brain weight, we assessed total brain area, neocortical
area, and microgyric lesion area, and estimated volume in
a randomly selected subset of subjects from Study 1 (Con-
trol N = 7 microgyric, 6 sham; Deprived N = 6 microgyric,

6 sham; Enriched N = 6 microgyric, 5 sham). Volume
measures were linearly regressed against body weight, and
the residuals were used as the dependent measure (see
Table 3). For microgyric volume, only lesioned subjects
were included in the regression. An initial ANOVA, using
residuals of microgyria volume as the dependent measure
and Environment as the independent measure, showed
no difference among the different environmental condi-
tions (F2,16 = 1.51, NS). This demonstrates an equivalent
microgyria size in all environmental groups. An ANOVA
on total brain volume revealed a significant effect of
Lesion (F1,31= 18.11, p < .001) and Environment (F1,31=
6.35, p = 0.01), but no interaction (F2,31= 2.33, NS). As
can be seen in Figure 3A, microgyric animals had smaller
brain volumes than their sham counterparts across all
conditions. Among the three environmental groups, those
from the acoustically Enriched group had smaller residu-
als than the other two groups.

An ANOVA using the residuals of neocortical volume as
the dependent measure were similar to those of brain vol-
ume (Figure 3B). Microgyric subjects had smaller neocor-
tical volumes than shams (F1,31 = 38.00, p < 0.001),
irrespective of environmental condition. Environmental
effects remained significant (F2,31 = 6.27, p< 0.01), with
those subjects in the acoustically Enriched group having
smaller neocortical volume residuals than those in the
other conditions. There was no interaction between
Lesion and Environment (F2,31 < 1, NS).

An ANOVA was performed for non-neocortical volume
(computed by total brain volume minus neocortical vol-
ume), to assess whether Lesion effects and Environmental
effects were specific to cortex, or distributed through non-
neocortical areas as well. Analysis showed a main effect of
Lesion (F1,31 = 9.62, p < 0.01), and Environment (F2,31 =
5.83, p < 0.01), with no interaction (F2,31 = 2.85, p > 0.05;
see Figure 3C). However, relative F values suggested that

Table 1: Mean (± SEM) Body Weights for All Studies

Study Surgical Group

Study 1 Environment Microgyria Sham
White Noise 506.8 ± 22.4 459.9 ± 25.4
Control 449.4 ± 10.6 462.1 ± 8.3
Enriched 408.9 ± 14.1 364.0 ± 9.3

Study 2 Age
P30 97.1 ± 4.7 98.2 ± 3.7
P52 230.6 ± 8.2 233.0 ± 11.9
P83 381.0 ± 10.4 382.5 ± 9.5

Study 3 Sex
Male 443.8 ± 9.7 459.3 ± 7.3
Female 238.4 ± 8.1 254.5 ± 5.6
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Brain weights (in g) from three separate studiesFigure 2
Brain weights (in g) from three separate studies. A. Study 1: Microgyric brains weigh less than shams at all environmental con-
ditions (P < .001). There is no effect of Environment when body weight is regressed out. B. Study 2: Animals with microgyria 
have smaller brain weights than shams at all three ages tested (P < .001). There is no effect of Age on brain weight when body 
weight is regressed out. C. Study 3: Microgyric brain weight is less than shams for both males and females (P < .001). There is 
no effect of Sex on brain weight when body weight is regressed out.
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while Environment main effects were equivalent between
cortex and non-cortex, Lesion effects were more pro-
nounced in the neocortex.

To directly assess the issue of a disproportionate loss of
neocortical volume in Lesion subjects, we computed the
ratio of neocortical to total brain volume, regressed those
values against body weight, and analyzed the residuals.
An ANOVA revealed a significant effect of Lesion (F1,31 =
25.66, p < 0.001) but not Environment (F2,31 = 2.97, p >
0.05), and no interaction between the two (F2,31 < 1, NS).
Thus, microgyric subjects had disproportionately smaller
cortices than their sham counterparts (Figure 3D). Envi-
ronment, conversely, affected the whole brain and had no
significant effects on this ratio measure. It is important to
note that the enrichment procedure of this study differed
significantly from those used previously[24] in that it
began prenatally. Future research will be needed to deter-
mine what possible effects this additional variable had on
subjects' body weight and brain volume.

Discussion
The current findings show that early focal brain injuries,
specifically P1 focal freezing necrosis producing microgy-
ria, lead to reductions in brain weight that are so robust
that the main effect of Lesion does not interact with Envi-
ronment, Age, or Sex. Analysis of histologic brain and
neocortical volume confirmed the effects of lesion on
brain weight, and suggest that the reduction in volume
associated with microgyria is proportionally greater in the
cerebral cortex. This finding supports previous work sug-
gesting that substantial reorganization of the brain is trig-
gered by the induction of bilateral freezing damage.
Surprisingly, this reorganization was not differentially
affected across ages, by an enriched environment, nor by
the difference in brain weight between the sexes
(e.g.,.Refs. [27,28]). Further, reorganization (i.e., brain

weight and volume reduction due to microgyria) was evi-
dent by P30 and remained consistent into adulthood.

Since reductions in brain weight and total brain volume in
Microgyric (Lesion) subjects reflect disproportionate loss
of neocortical tissue, it is important to address the
unlikely possibility that this effect reflects direct tissue loss
from lesion induction. This is unlikely because no tissue
was removed. Further, though microgyric neocortical tis-
sue showed anomalous organization, there was no
demonstrable tissue reduction localized to the malforma-
tion itself (see Figure 1).

Unlike Lesion effects, the reduction in brain volume seen
in subjects raised in an acoustically Enriched environment
was evident throughout neocortical and non-neocortical
regions, with no disproportionate effects in cortex. It is
possible that this reduction reflects the smaller body size
of enriched animals (who were highly active), and which
may not have been fully accounted for in the residual
measure due to a low n and accordingly low correlation.
Further research will be needed to reconcile this smaller
brain size with reports of increased brain weight in
enriched subjects [24–26]. It is important to note that the
environmental enrichment methods employed in this
study are fundamentally different from those used in
other studies; for example, our auditory environment dif-
ferences began prenatally and extended until adulthood.

Finally, Kolb and Cioe[29] also found a reduction in brain
weight following aspiration lesions of frontal cortex
performed on P2. Although aspiration differs from freez-
ing injury, both techniques were applied within the
period of neural migration, and have demonstrated little
effect of specific location of the lesion on a variety of
measures (e.g., behavior, brain weight, thalamic mor-
phology[14,30]). These factors indicate that subsequent

Table 2: Mean (± SEM) Residual Brain Weight Scores Regressed Against Body Weight for All Studies

Study Surgical Group

Study 1 Environment Microgyria Sham
White Noise -0.097 ± 0.035 0.079 ± 0.039
Control -0.044 ± 0.038 0.105 ± 0.028
Enriched -0.092 ± 0.027 0.040 ± 0.033

Study 2 Age
P30 -0.070 ± 0.025 0.041 + 0.026
P52 -0.068 ± 0.018 0.093 ± 0.015
P83 -0.079 ± 0.023 0.044 ± 0.026

Study 3 Sex
Male -0.050 ± 0.031 0.030 ± 0.034
Female -0.058 ± 0.038 0.077 ± 0.041
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systematic alterations (e.g., in function) may reflect a
developmental cascade leading to distal changes, rather
than stemming from the focal injury per se.

Conclusions
An animal model of microgyric neuromigrational anom-
alies has been employed to demonstrate a reduced brain

weight in microgyric subjects that is consistent across var-
iable ages, environments, and sex. Importantly, this effect
appears to reflect a disproportionate reduction of neocor-
tical volume. Since differences in brain weight have been
shown to be proportional to total brain DNA content and
thus total CNS cell number[31,32], and since brain weight
has been suggested to be a good surrogate measure for

Regional volumes as determined from stereology of histologic sectionsFigure 3
Regional volumes as determined from stereology of histologic sections. A. Total brain volume is smaller in animals with micro-
gyria than in shams (P < .001). This is true across all environmental conditions. B. Microgyric subjects have smaller neocortical 
volumes than do shams at all environmental conditions (P < .001). C. The volume of non-neocortical regions is smaller in 
microgyric as compared to sham subjects (P < .01). This is true across all environmental conditions. D. The ratio of neocortical 
to total brain volume is smaller in microgyric subjects, indicating that neocortex is disproportionately smaller in subjects with 
microgyria (P < .001).
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total cell number in mice (as in humans [28]), we
hypothesize that total cell number – particularly in cortex
– may be decreased in microgyric subjects.

Alternatively, the decrease in brain weight could reflect
changes in neuropil rather than cell numbers. It is impor-
tant to note that the highly significant Microgyria effects
on whole brain, and particularly cerebral cortex, are seen
despite a lack of body weight differences between Sham
and Lesion groups. Environment effects, conversely, may
be accounted for at least partly by significant body weight
differences (due to activity differences) that may not fully
have been accounted for in residual scores (due to rela-
tively small subject numbers). Collective results have crit-
ical implications for the profound re-organizational
effects of relatively small focal injuries early in develop-
ment, specifically to affect distributed systems throughout
the brain and in particular the cerebral cortex. Future
research will explore these issues.

Methods
Wistar rats (N = 96) from three separate study groups born
at the University of Connecticut to purchased dams from
Charles River Laboratories (Wilmington, MA) were used.
All groups received induced focal microgyric lesions on P1
using identical methods (see below), and took part in a
battery of auditory perception testing (data not shown).
All procedures were approved by the University of
Connecticut's Institutional Animal Care and Use Com-
mittee and conducted in accordance with the National
Institutes of Health Guide for the Care and Use of Labora-
tory Animals, with adequate measures to minimize pain
or discomfort to the animals.

Induction of Microgyric Lesions
On P1 (day of birth = P0), litters were culled to 10 rat pups
for focal microgyria induction. Pups were randomly des-
ignated to receive bilateral freezing lesions or sham sur-
gery, balancing treatment within litters. Focal microgyric

lesions were induced using a modification of the tech-
nique employed by Dvorák and associates[33,34]; and
explained in detail elsewhere[5]. Briefly, pups assigned to
the lesion condition received hypothermia induced
anesthesia followed by a small midline incision over the
skull. A cooled (-70°C) 2-mm diameter stainless steel
probe was placed on the skull approximately 2 mm lateral
of the sagittal suture overlying bregma for 5 sec. Following
the initial lesion, an identical lesion was placed in the
opposite hemisphere (first lesion side randomly deter-
mined) using a second cooled probe. Sham subjects had
identical treatment, except the steel probe was maintained
at room temperature. Following treatment, the skin was
sutured, and subjects were marked with ink footpad injec-
tions, warmed, and returned to the dam.

Study Groups
A summary of the three study groups is presented in Table
4. Study 1 assessed environmental variations on the
effects of the P1 induced microgyria in male subjects. Lit-
ters were raised from embryonic day 7 (E7) to adulthood
(P70) in one of three environmental conditions. A Con-
trol group was reared in the normal housing area
(background room noise = 45–55 dB), and was pair-
housed by treatment at weaning (P21). A White Noise
group was reared in a separate room with 24 h. exposure
to a broad band white noise (80 dB), and was pair-housed
by treatment at weaning. An Enriched group was reared in
a separate room with 3 h of non-vocal, light classical
music exposure (75–78 dB) daily as the dark period
began, and was group housed (n = 19) at weaning in an
enriched housing condition. Brain analysis (see below)
occurred on P118 (see [15] for further study details).
Study 2 assessed the effects of P1 induced microgyria in
male rats across three stages of development. To accom-
modate auditory testing, pups were weaned on P24 and
pairhoused by treatment in the normal housing area.
Brain analysis (see below) occurred on P30, P52, and P83.
Study 3 assessed the effects of P1 induced microgyria in

Table 3: Mean (± SEM) Residual Volume Scores Regressed Against Body Weight.

Volume Measure Surgical Group Environment Condition

White Noise Control Enriched
Total Brain Microgyria -51.44 ± 11.26 7.92 ± 12.36 -94.55 ± 21.32

Sham 89.35 ± 34.37 45.73 ± 23.36 -15.74 ± 35.59
Neocortex Microgyria -13.38 ± 3.68 -14.09 ± 5.28 -31.16 ± 5.46

Sham 35.53 ± 10.64 19.51 ± 8.28 0.01 ± 8.41
Non Neocortex Microgyria -38.06 ± 8.83 22.01 ± 12.72 -63.50 ± 17.59

Sham 53.82 ± 24.03 26.22 ± 18.01 -15.75 ± 27.60
Cortex: Total Brain Microgyria -0.00 ± 0.004 -0.02 ± 0.008 -0.01 ± 0.007

Sham 0.02 ± 0.004 0.01 ± 0.008 0.01 ± 0.004
Microgyria -0.35 ± 1.90 1.79 ± 1.31 -1.75 ± 1.15
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males and females. At weaning (P21), pups were pair-
housed by sex and treatment in the normal housing area.
Brain analysis (see below) occurred on P110.

Brain Weight Analysis
Subjects were weighed, anesthetized and transcardially
perfused (0.9% saline, 10% Phosphate Buffered Forma-
lin). Heads were removed, placed in formalin, and
shipped to GDR for anatomical analysis. Brains were
removed (spinal cord removed at the caudal extent of the
cerebellum) and weighed. The brains were then embed-
ded in celloidin as described previously[14,15,35], sliced
at 30 µm, and every tenth section stained with cresyl violet
and mounted onto glass slides. Microgyric lesions were
confirmed and location assessed.

Separate ANOVA's were performed on brain weight resid-
uals for each study group after regressing against body
weight (see Tables 1 and 2), using either a linear regres-
sion (Studies 1 and 3), or a logarithmic regression (Study
2). The logarithmic regression for Study 2 compensated
for the confound between brain weight and age in this
study. Each study's specific treatment groups served as
Between Subject variables – Study 1: Environment (3 lev-
els: Enriched, White Noise, and Control), Lesion (2:
Microgyric Lesion and Sham); Study 2: Age (3: P30, P52,
and P83), Lesion (2: Microgyric Lesion and Sham); Study
3: Sex (2: Male and Female), Lesion (2: Microgyric Lesion
and Sham).

Brain Volume Analysis
Volumes were estimated using Stereo Investigator (Micro-
brightfield Corp., USA) interfaced to a Nikon E800 micro-
scope (Nikon Instruments, USA) fitted with a Prior
motorized stage (Prior Scientific, USA). The areas of sys-
tematic series of sections through the entire region of
interest were measured using point counting, and the vol-
umes estimated using Cavalieri's rule. In cases where there
were missing sections, volumes were estimated using a
parabolic approach[36]. Measures of total brain volume
included the entire brain from olfactory bulb to cerebel-
lum. Cerebral cortex was measured from the first section
on which it appeared through its caudal extent, with the

lateral boundary defined by entorhinal cortex. For
estimates of total brain and cerebral cortical volume, we
measured every 40th section using a 1 mm2 point counting
grid (13–18 sections for total brain volume, 7–13 sections
for cerebral cortex). Microgyric volume was measured on
every 20th section using a 300 µm2 grid (6–10 sections/
subject). The coefficient of error for these measures ranged
from 0.01 to 0.10, with means of 0.02 ± 0.004 for brain
volume, 0.05 ± 0.011 for neocortical volume, and 0.06 ±
0.02 for microgyria volume.

List of Abbreviations
P - Postnatal Day

E - Embryonic Day

SM-I - Somatosensory-related cortex

Par1 - Primary somatosensory cortex

Par2 - Secondary somatosensory cortex

HL - Hindlimb area of somatosensory cortex

FL - Forelimb area of somatosensory cortex

ANOVA - Analysis of variance
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Table 4: Study Group Composition

Study 1: Environment Study 2: Development Study 3: Sex

Age at Time of Brain Analysis P118 P30 (N = 7L/11s) P52 (N = 8L/10S) P83 
(N = 10L/10S)

P110

Environment Standard Housing (N = 7L/7S) White 
Noise (N = 6L/7S) Enriched (N = 7L/6S)

Standard Housing Standard Housing

Subject Sex Male Male Male (N = 10L/10S) Female (N = 10L/10S)

A summary of the three Study Groups used to evaluate effects of induced P1 bilateral microgyria on brain weight. Note: P = Postnatal Day (P0 = 
birth), L = Microgyric Lesion Subject, S = Sham Subject
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