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Abstract
Background: Previous studies indicate that light information reaches the suprachiasmatic nucleus
(SCN) through a subpopulation of retinal ganglion cells that contain both glutamate and pituitary
adenylyl cyclase activating peptide (PACAP). While the role of glutamate in this pathway has been
well studied, the involvement of PACAP and its receptors are only beginning to be understood.
Speculating that PACAP may function to modulate how neurons in the suprachiasmatic nucleus
respond to glutamate, we used electrophysiological and calcium imaging tools to examine possible
cellular interactions between these co-transmitters.

Results: Exogenous application of PACAP increased both the amplitude and frequency of
spontaneous excitatory postsynaptic currents recorded from SCN neurons in a mouse brain slice
preparation. PACAP also increased the magnitude of AMPA-evoked currents through a mechanism
mediated by PAC1 receptors and the adenylyl cyclase-signalling cascade. This enhancement of
excitatory currents was not limited to those evoked by AMPA as the magnitude of NMDA currents
were also enhanced by application of PACAP. Furthermore, PACAP enhanced AMPA and NMDA
evoked calcium transients while PACAP alone produced very little change in resting calcium in
most mouse SCN neurons. Finally, in rat SCN neurons, exogenous PACAP enhanced AMPA
evoked currents and calcium transients as well evoked robust calcium transients on its own.

Conclusion: The results reported here show that PACAP is a potent modulator of glutamatergic
signalling within the SCN in the early night.

Background
In mammals, the neural structure responsible for most cir-
cadian behaviours can be localized to a bilaterally paired
structure in the hypothalamus, the suprachiasmatic
nucleus (SCN). These SCN neurons must be synchronized
to each other as well as to the environment in order to

function adaptively. The daily cycle of light and dark is the
dominant environmental cue responsible for synchroniz-
ing this biological timing system to the environment. The
SCN receives photic information directly through a mon-
osynaptic projection from the retina known as the retinal
hypothalamic tract (RHT). The RHT comprises a distinct
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subset of retinal ganglion cells that contain a novel pho-
topigment melanopsin and are directly light-sensitive
[1,2]. There is a variety of evidence that the amino acid
glutamate is a transmitter at the RHT/SCN synaptic con-
nection and that this transmitter plays a critical role in
mediating photic regulation of the circadian system [3,4].
One of the main post -synaptic consequences of gluta-
mate receptor activation within the SCN is an increase in
intracellular calcium (Ca2+) [5,6]. The signal transduction
events after Ca2+ release are beginning to be understood
and include the release of nitric oxide, activation of the
Ras/MAP kinase cascade, and ultimately changes in gene
expression [7-9].

The neuropeptide PACAP has emerged as a likely retinal
messenger to the SCN, acting in concert with glutamate to
communicate with the SCN. PACAP-like immunoreactiv-
ity is found in terminals of retinal ganglion neurons inner-
vating the SCN [10,11] and two of the receptors sensitive
to PACAP (PAC1 and VPAC2) are expressed in the SCN
[12-15]. In the SCN, application of PACAP results in Ca2+

transients [16,17], activation of the MAPK signalling cas-
cade [17,18], and changes in gene expression [18-21]. At
a systems level, applica tion of PACAP can shift the phase
[22,23] or alter the magnitude of glutamate -induced
phase shifts [24] of the circadian rhythm of SCN neuronal
firing in a brain slice preparation. Similarly, microinjec-
tions of PACAP into the SCN region in vivo can cause
phase shifts [23,25-27]. Administration of a PACAP recep-
tor antagonist or an antibody against PACAP attenuates
light-induced phase delays [27]. The circadian system of
mice deficient in the PAC1 receptor [28], the VPAC2
receptor [29], or PACAP [30], each exhibited altered
behavioural responses to light. In our own work, we have
found that PACAP-deficient mice exhibit a selective loss in
the magnitude of light-induced phase advances and
delays [31]. Given this previous data, we became inter-
ested in understanding more about PACAP/glutamate
interactions at the cellular level in the night.

Results
PACAP enhanced excitatory synaptic transmission 
measured in mouse SCN neurons
PACAP is co-expressed with glutamate in at least some of
the retinal ganglion cell population that innervates the
SCN [10,11]. Whole -cell voltage -clamp recording tech-
niques were used to test the hypothesis that PACAP may
function to modulate spontaneous excitatory postsynap-
tic currents (sEPSCs) in ventral SCN neurons during the
night (ZT 15–17; Fig. 1). The mean frequency and the
mean amplitude of sEPSCs recorded at a holding poten-
tial of -70 mV were 0.17 ± 0.03 Hz and -10.9 ± 0.8 pA,
respectively (n = 6). These sEPSCs were recorded in the
presence of TTX and bicuculline. The sEPSCs were com-
pletely abolished with CNQX (25 µM, 5 of 5 neurons

tested, data not shown), indicating that they are largely
mediated by AMPA/KA GluRs. Application of PACAP (10
nM) increased the sEPSC amplitude by 20% ± 5% (n = 6,
P < 0.01) in all ventral SCN neurons examined. PACAP
also increased the sEPSC frequency in 4 of 6 cells (Con-
trol: 0.17 ± 0.03 Hz; PACAP: 0.42 ± 0.2 Hz, P < 0.05).
Thus PACAP can increase both sEPSC frequency and
amplitude, suggesting that PACAP can modulate both
pre-synaptic release as well as post-synaptic sensitivity to
glutamate.

PACAP enhances the frequency and amplitude of sEPSCs recorded from mouse SCN neuronsFigure 1
PACAP enhances the frequency and amplitude of 
sEPSCs recorded from mouse SCN neurons. Whole 
cell patch clamp recording techniques were used to measure 
the sEPSCs in ventral SCN neurons during the night (ZT 15–
17). All experiments were carried out in presence of TTX 
(0.5 µM) and bicuculline (25 µM). (A) Top panel provides an 
example of sEPSCs recorded before and after treatment with 
PACAP (10 nM, 240 sec). PACAP increased the frequency (4 
out of 6 neurons) and the amplitude (6 out of 6 neurons) of 
the sEPSCs. (B) Average sEPSC waveform recorded in an 
SCN neuron before and after treatment with PACAP (10 
nM, 240 sec). PACAP increased the sEPSC amplitude by 20% 
± 5 %.
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PACAP enhanced AMPA-evoked currents recorded in 
mouse SCN neurons
To directly test the hypothesis that PACAP modulates the
post-synaptic response of SCN neurons to glutamatergic
stimulation, whole cell patch clamp recording techniques
were used to directly measure currents evoked by AMPA
(25 µM) in ventral SCN neurons (Fig. 2). Most SCN neu-
rons (91%; 78 out of 86 neurons tested) exhibited AMPA-
evoked currents. These inward currents exhibited a linear
voltage-dependency with reversal potentials around 0
mV. AMPA-evoked currents were stable (<5% change in
amplitude) over the course of 30 min of recording (n = 6;
data not shown) and were eliminated by the addition of
the AMPA/KA GluR antagonist CNQX (25 µM; n = 6; data
not shown). These experiments were performed in the
presence of TEA (10 mM), TTX (0.5 µM) and Cd2+ (25
µM) to block most voltage dependent ionic currents. The
bath application of AMPA (25 µM) produced a normal-
ized peak current of -4.6 ± 0.6 pA/pF (n = 27) in ventral
SCN neurons recorded in the night (ZT 15–17). Pre-treat-
ment with PACAP (10 nM, 240 sec) significantly
enhanced the magnitude of AMPA-evoked currents in
SCN neurons examined (8 out of 10 neurons, 34% ± 5%
increase in peak current, P < 0.01, Fig. 2). Pre-treatment
with a higher concentration of PACAP (100 nM, 240 sec)
did not result in a greater enhancement of the magnitude
of AMPA -evoked currents in SCN neurons examined (5
out of 7 neurons, 30% ± 5% increase in peak current).
Lower concentrations of PACAP did not produce signifi-
cant changes in the magnitude of the AMPA response (0.1
nM PACAP: 5% ± 2%, n = 5; 1.0 nM PACAP: 13 ± 10%, n
= 6). By itself, PACAP did not evoke any measurable cur-
rent in SCN neurons held at a range of different voltages
(-120 mV to 30 mV; n = 14).

In the next set of experiments, we wanted to determine if
this e ffect of PACAP is mediated by PAC1 receptors and a
regulation of the adenylyl cyclase (AC) signalling cascade
(Fig. 2B). The PAC1 receptor agonist maxadilan (10 nM,
240 sec) enhanced the peak current evoked by AMPA
(58% ± 13%, n = 8; P < 0.01) whereas pretreatment with
the PAC1 antagonist M65 prevented the stimulatory effect
of PACAP (10 nM) on AMPA currents (2% ± 8%, n = 7).
PAC1 receptors are positively coupled to AC activity and
additional experiments were designed to investigate if
PACAP enhancement of AMPA currents could be medi-
ated through this mechanism. The application of an AC
activator, forskolin (FSK, 10 µM, 240 sec) increased the
magnitude of the AMPA currents (8 out of 11 neurons;
24% ± 3%; P < 0.05). By itself, application of the PKA
inhibitor, H89 (20 µM, 240 sec), alone did not signifi-
cantly alter the magnitude of the AMPA currents (1% ±
7%, n = 6, P > 0.05); however, in the presence of H89,
PACAP no longer produced a significant change in the
magnitude of the AMPA current (4% ± 6%, n = 8, P >

0.05). This data was all collected in ventral SCN neurons
recorded in the night (ZT 15–17). This data suggests that
PACAP can modulate AMPA currents through a PAC1

PACAP enhanced AMPA currents in mouse SCN neuronsFigure 2
PACAP enhanced AMPA currents in mouse SCN 
neurons. Whole cell patch clamp recording techniques 
were used to directly measure currents evoked by AMPA in 
ventral SCN neurons during the night (ZT 15–17). The volt-
age -dependence of the AMPA-evoked currents was meas-
ured by moving the membrane potential of the cell through a 
series of voltage -steps before, during, and after treatment 
with AMPA (25 µM) in the bath. (A) By itself, PACAP (10 
nM, 240 sec) did not activate voltage-dependent currents, 
however, PACAP did increase the magnitude of AMPA-
evoked currents. Top panel shows current-voltage relation-
ships for peak current during AMPA treatment recorded 
using this protocol before and after treatment with PACAP 
(10 nM, 240 sec). (B) Histograms demonstrating that the 
effects of PACAP were mimicked by the PAC1 receptor ago-
nist maxadilan and blocked by the antagonist M65. By itself, 
M65 did not alter the magnitude of the AMPA current (data 
not shown). In addition, effects of PACAP were mimicked by 
the AC activator FSK and blocked by the PKA inhibitor H89. 
By itself, H89 did not alter the magnitude of the AMPA cur-
rent (data not shown). Asterisks indicate values that are sig-
nificantly different than those of the AMPA-treated group (P 
< 0.05).
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receptor mediated activation of the AC/PKA signalling
pathway.

PACAP enhanced NMDA-evoked currents recorded in 
mouse SCN neurons
PACAP can potentiate NMDA currents in acutely disasso-
ciated hamster SCN neurons [23] and we sought to deter-
mine if PACAP has the same effect in ventral SCN neurons
in mice (Fig. 3). Whole cell patch clamp recording tech-
niques were used to directly measure currents evoked by
NMDA (25 µM) in ventral SCN neurons recorded during
the night (ZT 15–17). These experiments were performed
in the presence of TEA (10 mM), TTX (0.5 µM) and Cd2+

(25 µM) in the bath. Most SCN neurons (75%) exhibited
NMDA-evoked currents (n = 69). These inward currents
were voltage-dependent, i.e. NMDA-evoked currents
peaked when the cell was held at a membrane potential
between -20 and -40 mV. NMDA-evoked currents were
stable (<5% change in amplitude) over the course of 30
min of recording (n = 6; data not shown) and were
reduced 85% by the addition of the NMDA antagonist
AP5 (50 µM; n = 8, data not shown). The bath application
of NMDA (25 µM) produced a normalized peak current of
-2.3 ± 0.2 pA/pF (n = 8) in ventral SCN neurons recorded
in the night. Treatment with PACAP (10 nM, 240 sec) also
significantly enhanced the magnitude of NMDA-evoked
currents in SCN neurons examined (6 out of 8 neurons,
106% ± 31% increase in peak current, P < 0.01, Fig. 3).
The application of FSK (10 µM, 240 sec) also increased the
magnitude of the NMDA currents (8 out of 11 neurons;
24% ± 3%; P < 0.05). In the presence of H89, PACAP no
longer produced a significant change in the magnitude of
the NMDA current (-10% ± 3%, n = 5, P > 0.05).

PACAP enhanced AMPA and NMDA evoked Ca2+ 

transients in mouse SCN neurons
One of the main postsynaptic consequences of glutama-
tergic stimulation of neurons in the SCN is the induction
of a Ca2+ transient [6,32,33]. Previous studies have dem-
onstrated that PACAP alone can increase Ca2+ as well as
modulate glutamatergic evoked responses in cultured rat
SCN neurons [16,17,34]. In order to test the hypothesis
that PACAP regulates AMPA – and NMDA-induced Ca2+

transients in ventral SCN neurons during the night (ZT
15–17), a bulk loading procedure was used to load cells
with a membrane permeable form of the Ca2+ indicator
dye fura2. Cells that exhibited uneven loading due to dye
sequestration were not included in the data set. Small cell
types including glia were easily identified and were also
excluded in the data set. These experiments were carried
out in the presence of TTX. By itself, PACAP (100 nM, 240
sec) produced an average increase in Ca2+ of 6% ± 1% (n
= 177) whereas a lower concentration of PACAP (10 nM,
240 sec) produced an average increase in Ca2+ of 2% ± 1%
(n = 60). Lower concentrations of PACAP (1 and 0.1 nM,

240 sec) did not alter Ca2+ levels within SCN neurons
(data not shown). While most cells (approximately 70%)
in the ventral SCN region did not respond to PACAP,
there was a subpopulation of cells that exhibited a robust
Ca2+ response to the bath application of PACAP. In this
subpopulation within the ventral SCN (49 out of 177 cells
sampled), PACAP (100 nM, 240 sec) caused mean peak
changes in Ca2+ of 19% ± 1%. In addition, PACAP pre-
treatment significantly enhanced SCN cells' response to
AMPA (Fig. 4A). Within the ventral SCN (n = 99), bath
application of AMPA (25 µM, 120 sec) alone increased
Ca2+ levels by 26% ± 2% whereas the same treatment
increased Ca2+ levels by 34% ± 4% after pre-treatment
with PACAP (10 nM, 240 sec; P < 0.05; Fig. 4B). The
effects of PACAP on AMPA were mimicked by the PAC1
agonist maxadilan (100 nM, 240 sec) (Fig. 4C; maxadilan
+ AMPA: 34% ± 3% increase; maxadilan: 1.6% ± 0.3%
increase; n = 86). Finally, PACAP pre-treatment signifi-
cantly enhanced SCN cells' response to NMDA (Fig. 4B).
Within the ventral SCN (n = 39), bath application of
NMD A (25 µM, 120 sec) alone increased Ca2+ levels by
15% ± 1% whereas the same treatment increased Ca2+ lev-
els by 31% ± 3% after treatment with PACAP (10 nM, 240
sec; P < 0.001).

PACAP enhanced AMPA currents and AMPA-evoked Ca2+ 

transients in rat SCN neurons
Previous studies in cultured rat SCN neurons have dem-
onstrated that PACAP alone can increase Ca2+ as well as
modulate glutamatergic evoked responses [16,17]. In the
final set of experiments, we sought to determine if the
PACAP regulation of AMPA currents and Ca2+ transients
that we described in mice were also present in the rat prep-
aration (Fig. 5). The experimental conditions for experi-
ments with the rat were the same as described for the
mouse above with the data collected from ventral SCN
neurons during the night (ZT 15–17). The bath applica-
tion of AMPA (25 µM) produced a normalized peak cur-
rent of -7.2 ± 0. 8 pA/pF (n = 15). Treatment with PACAP
(10 nM) significantly enhanced the magnitude of AMPA -
evoked currents in these cells (-8.5 ± 0. 9 pA/pF, n = 15, P
< 0.01). Application of PACAP alone (100 nM, 240 sec)
produced measurable Ca2+ transients in most SCN neu-
rons (33 out of 42 neurons) with an average increase in
Ca2+ of 85% ± 35%. Finally, pre-treatment with PACAP
significantly enhanced AMPA-evoked Ca2+ transients
within the rat SCN. Bath application of AMPA (25 µM,
120 sec) alone increased Ca2+ levels by 28% ± 6% whereas
the same treatment increased Ca2+ levels by 43% ± 8%
after treatment with PACAP (10 nM, 240 sec; n = 22; P <
0.05). Therefore, while PACAP enhanced AMPA evoked
currents and Ca2+ transients in both species, the magni-
tude of PACAP's actions were greater in the rat.
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Discussion
The neuropeptide PACAP has emerged as a likely retinal
messenger to the SCN acting in concert with glutamate to
communicate with the SCN. Understanding the cellular
mecha nisms by which PACAP regulates SCN neurons is a
critical step toward the development of a mechanistic
explanation for the role of this peptide in the mammalian
circadian system. The data reported here demonstrate that
PACAP is a potent modulator of glutamatergic signalling
within the SCN during the night. First, we found that
PACAP increases the sEPSC frequency recorded in SCN in
the presence of TTX. Each miniature synaptic current is
thought to result from the spontaneous fusion of an indi-
vidual synaptic vesicle with the pre-synaptic membrane
subsequently resulting in quantal release of transmitter
molecules. Changes in the frequency at which this process
occurs are normally associated with alterations in the pre
-synaptic release process while changes in the amplitude
of the currents reflect postsynaptic changes in receptor
sensitivity or ionic driving force. The finding that PACAP
changed the sEPSC frequency indicates a pre-synaptic
mechanism. Interestingly, the PAC1 receptor mRNA and
protein are expressed in retinal ganglion cells [35] and

may thus be in the neurons that form the RHT. At least
one previous study found evidence to suggest that PACAP
can act presynaptically to increase the frequency of excita-
tory postsynaptic potentials in the hippocampus [36]. In
addition to the enhanced presynaptic release of gluta-
mate, the observation that PACAP can directly increase
the amplitude of sEPSCs is consistent with post-synaptic
regulation.

We then directly demonstrated that application of PACAP
enhances the magnitude of the currents evoked by appli-
cation of AMPA and NMDA. This later data complements
a previous study by Harrington and colleagues [23] dem-
onstrating that PACAP can enhance NMDA currents in
acutely disassociated hamster SCN neurons. We assume
that glutamate receptor mediated Ca2+ transients are likely
to be critically involved in the regulation of transcrip-
tional events needed to generate phase shifts of circadian
rhythms. Therefore, we examined the effect of PACAP on
Ca2+ levels in SCN neurons. PACAP elicits marked Ca2+

transients in about 30% of the ventral SCN cells that we
examined. This effect was quite modest in the mouse and
not statistically significant but was much more robust in
the rat. PACAP-mediated increases in cytosolic Ca2+ have
been observed previously in cultured rat SCN neurons
and have been found due to the release of Ca2+ from intra-
cellular stores [16,34]. PACAP also enhanced the magni-
tude of the Ca2+ transient evoked by stimulation with
AMPA and NMDA. PACAP potentiation of AMPA-evoked
Ca2+ transients has previously been demonstrated from
cultured rat SCN neurons [17,34].

PACAP is a member of the glucagon/vasoactive intestinal
peptide/secretin/growth hormone -releasing family of
structurally related peptides [38]. The neuromodulatory
actions of PACAP are mediated by three receptor subtypes:
PAC1, VPAC1, and VPAC2 [39]. The PAC1 receptor is
more selective for PACAP while the VPAC1 and VPAC2
receptors can be potently activated by VIP or PACAP [38].
Both PAC1 and VPAC2 mRNAs are expressed within the
rat SCN [12-15]. In the present study, we found that the
PAC1 receptor agonist maxadilan [40] mimicked the
effects of PACAP on AMPA-evoked currents and Ca2+ tran-
sients whereas pretreatment with the PAC1 antagonist
M65 [41,42] prevented the stimulatory effect of PACAP.
As is the case with many receptor agonists, maxadilan pro-
duced a stronger effect then equal molar concentrations of
PACAP itself [43].

Application of maxadilan alone has been previously
shown to evoke changes in the firing rate of 40% of SCN
neurons examined and activations to this agonist were not
altered by a VPAC2 antagonist (PG 99–465) [44]. A recent
study found that PAC1 mRNA was present in nearly half
(45%) of the VIP expressing neurons in the rat SCN [15].

PACAP enhanced NMDA currents in mouse SCN neuronsFigure 3
PACAP enhanced NMDA currents in mouse SCN 
neurons. Whole cell patch clamp recording techniques 
were used to directly measure currents evoked by NMDA in 
ventral SCN neurons during the night (ZT 15–17). The volt-
age -dependence of the NMDA-evoked currents was meas-
ured by moving the membrane potential of the cell through a 
series of voltage -steps before, during, and after treatment 
with NMDA (25 µM) in the bath. By itself, PACAP (10 nM, 
240 sec) did not activate voltage-dependent currents, how-
ever, PACAP did increase the magnitude of NMDA-evoked 
currents. Current-voltage relationships for peak current dur-
ing NMDA treatment recorded using this protocol before 
and after treatment with PACAP (10 nM).
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This frequency of receptor expression fits reasonably well
with our Ca2+ imaging measurements in the ventral SCN
in which about half the SCN cells sampled exhibited a
PACAP enhancement of AMPA evoked responses. Simi-
larly, previous physiological studies are also consistent
with the PAC1 receptor mediating many of the effects of
PACAP in the SCN [16,22,45]. Thus, the available evi-
dence indicates that the PAC1 receptor is responsible for
mediating the effects of PACAP on SCN neurons.

The PAC1 receptor has several possible splice variants that
allow the receptor to couple to different second messenger
signalling cascades [46]. A PCR analys is of the mRNA iso-
lated from the rat SCN found evidence for the expression
of two PAC1 isoforms including the PAC1null splice vari-
ant [47]. This form of the receptor can potently activate
AC through Gs in transfected cells [38,46]. NMDA and
AMPA receptors are known to be subject to a wide range
of regulatory/modulatory influences including serine/
threonine kinases [48,49]. Therefore, we examined the
hypothesis that PACAP regulates AMPA receptors through
an activation of the AC/PKA signalling cascade. We found
that the application of an AC activator (FSK) mimicked
the enhancement of AMPA currents produced by PACAP.
Pretreatment with a PKA inhibitor (H89) prevented the
enhancement of AMPA currents by PACAP but, by itself,
H89 did not alter these currents. The simplest explanation
for our data is that PACAP modulate glutamatergic signal-
ling through a PAC1 receptor mediated activation of AC
activity. However, less direct effects are also possible. For
example, PACAP increases expression of scaffolding pro-
teins Homer1 and Rack1 and both of these proteins have
been shown to play a role in the regulation of glutama-
teric synaptic transmission [20,50]. Furthermore, previ-
ous work by Dziema and Obrietan [17] suggests that
PACAP enhances AMPA-evoked Ca2+ transients through a
regulation of L -type Ca2+ currents mediated by MAPK sig-
nal transduction cascade. In contrast, we still saw PACAP-
enhancement of AMPA currents even when voltage-gated
Ca2+ currents were blocked by cadmium. Thus PACAP
appears to utilize a variety of mechanisms by which it can
regulate the excitability of SCN neurons including pre-
synaptic regulation of glutamate release, as well as the
post-synaptic regulation of GluRs, activation of voltage-
sensitive Ca2+ channels [17] and release of Ca2+ from
intracellular stores [16,34].

In the present study, we examined the concentration
dependence of PACAP evoked changes in Ca2+ transients
and PACAP enhancement of AMPA currents. We did not
find significant measurable changes at the 0.1 and 1.0 nM
PACAP concentrations. We focused on the nanomolar
concentration range as we wanted to use the lowest possi-
ble concentrations that produced physiological effects.
Previous studies have found physiological effects of

PACAP enhanced AMPA- and NMDA-evoked Ca2+ responses in a subset of mouse SCN neuronsFigure 4
PACAP enhanced AMPA- and NMDA-evoked Ca2+ 

responses in a subset of mouse SCN neurons. Optical 
imaging techniques were used to estimate Ca2+ responses to 
AMPA and NMDA in ventral SCN neurons during the night 
(ZT 15–17). (A) AMPA (25 µM)-induced Ca2+ transients 
were also enhanced by the pre-treatment with PACAP (10 
nM, 240 sec). (B) NMDA (25 µM)-induced Ca2+ transients 
were also enhanced by the pre-treatment with PACAP (10 
nM, 240 sec). (C) Histograms summarizing PACAP modula-
tion of AMPA and NMDA-evoked Ca2+ transients in the 
SCN. The enhancement of AMPA-evoked Ca2+ transients 
was mimicked by the PAC1 receptor agonist maxadilan (Max, 
100 nM, 240 sec). This data was collected in the presence of 
TTX. Asterisks indicate values that are significantly greater 
than those of the AMPA- or NMDA-treated groups (P < 
0.05)
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PACAP on SCN neurons in the nanomolar concentration
range [23,44]. We did not explore the micomolar concen-
trations though PACAP at these concentrations has been
shown to alter glutamate induced regulation of mPer and
phase shifts of neural activity rhythms [19,24].

There is also evidence that PACAP actions on the circadian
system can vary with the phase of the daily cycle. When
measur ing neural activity rhythms from rat brain slices,
administration of PACAP in micromolar concentrations
enhanced the phase shifting effects of glutamate in the
early night but had the opposite effect in the late night
[24]. Furthermore, the administration of anti-PACAP anti-
bodies into the cerebral ventricles of hamsters was
reported to enhance light-induced phase advances [24]
and attenuate light-induced phase delays [27]. Light stim-
ulation in the early night resulted in larger phase delays in
PAC1 -/- mice accompanied by a reduction in light-
induced mPer and c-Fos expression [21]. In the late night,
photic stimulation of the PAC1 -/- mice produced phase
delays instead of the usual phase advances and was not

associated with any changes in mPer or Fos. These studies
have led to the proposal that PACAP's effects on the light-
input to the circadian system are phase-dependent in that
PACAP will enhance light-induced phase delays but
inhibit light-induced phase advances [24,51]. In contrast,
a recent study found that PACAP-deficient mice exhibited
significantly attenuated phase advances but light-induced
phase delays were only slightly diminished [30]. In our
own work, we found PACAP -deficient mice exhibited sig-
nificant impairment in the magnitude of the response to
brief light exposures with both light-induced phase delays
and advances of the circadian system impacted [31]. The
present physiological data indicate that PACAP enhances
AMPA and NMDA currents in the early night. Thus our
data lead us to propose that PACAP plays a role modulat-
ing the response of SCN neurons to glutamatergic stimu-
lation and is required for normal light-induced
synchronization of the circadian system.

Conclusion
In our view, PACAP acts through multiple mechanisms to
enhance glutamatergic input to the SCN and that loss of
this modulation results in a loss of sensitivity to photic
stimulation during the night. First, our finding that
PACAP increases sEPSC frequency and the anatomical
finding that PAC1 receptors are expressed in retinal gan-
glion cells [35] raises the possibility that PACAP may act
presynaptically to regulate the release of glutamate onto
SCN neurons. In addition, PACAP enhances both NMDA-
evoked and AMPA-evoked currents in SCN neurons. Our
evidence suggests that PACAP regulation of the magnitude
of AMPA currents is dependent upon PAC1 receptors and
the adenylyl cyclase-signalling cascade. Interestingly, a
recent study found evidence suggesting that the enhance-
ment of AMPA mediated synaptic transmission in the
SCN is sufficient to increase the magnitude of light-
induced phase delays [52]. Finally, PACAP can increase
Ca2+ by itself as well as enhance AMPA- and glutamate -
evoked increases in Ca2+ [16,17,34]. L ikely through these
mechanisms, PACAP can regulate mPer expression in SCN
neurons [18,19]. Certainly, a better understanding of the
cellular mechanisms by which PACAP regulates SCN neu-
rons is a critical step toward the development of a mecha-
nistic explanation for the role of this peptide in the
circadian system.

Methods
Brain slice preparation
The University of California, Los Angeles Animal Research
Committee approved the experimental protocols used in
this study (protocol #: 1997-027-23A). Briefly, mice and
rats were killed by decapitation, brains dissected and
placed in cold oxygenated ACSF containing (in mM) NaCl
130, NaHCO3 26, KCl 3, MgCl2 5, NaH2PO4 1.25, CaCl2
1.0, glucose 10 (pH 7.2–7.4). After cutting slices (Micro-

Comparison between AMPA-evoked responses in SCN neu-rons of rats and miceFigure 5
Comparison between AMPA-evoked responses in 
SCN neurons of rats and mice. Optical imaging tech-
niques were used to estimate Ca2+ responses to A MPA in 
ventral SCN neurons during the night (ZT 15–17). Applica-
tion of PACAP increased AMPA-evoked currents and Ca2+ 

responses in ventral SCN region of mice and rats. The left 
two histograms compare PACAP (10 nM, 240 sec) enhance-
ment of AMPA (25 µM, 120 sec) induced currents in mouse 
and rat. The right two histograms compare PACAP (10 nM, 
240 sec) enhancement of AMPA (25 µM, 120 sec) induced 
Ca2+ transients in mouse and rat. Pretreatment with PACAP 
significantly increased AMPA evoked currents and Ca2+ tran-
sients in both mice and rats. In both cases, the effects of 
PACAP were significantly larger in the rat. Asterisks indicate 
values that are significantly greater in the rat then in the 
mouse (P < 0.05). Data is shown as means ± SE.
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slicer, DSK Model 1500E) from areas of interest, trans-
verse sections (350 µm) were placed in ACSF (25–27°C)
for at least 1 h (in this solution CaCl2 is increased to 2
mM, MgCl2 is decreased to 2 mM). Slices are constantly
oxygenated with 95% O2-5% CO2 (pH 7.2–7.4, osmolal-
ity 290–310 mOsm).

Infrared Differential Interference Contrast (IR DIC) 
Videomicroscopy
Slices were viewed with an upright compound microscope
(Olympus BX50), using a water immersion lens (40X)
and DIC optics. They were illuminated with near IR light
by placing an IR bandpass filter (750–1050 nm) in the
light path. The image was detected with an IR-sensitive
video camera (Hamamatsu C2400, Bridgewater, NJ) and
displayed on a video monitor. A camera controller
allowed analog contrast enhancement and gain control.
Cells were typically visualized from 30–100 µm below the
surface of the slice. In the present study, IR videomicros-
copy was utilized to visualize cells within the brain slice
and to limit some of the uncertainty as to the cell type.
This imaging technique allowed us to clearly see the SCN
and to exclude cells from the surrounding hypothalamic
regions. In addition, we distinguished between dorsal and
ventral SCN regions as previously described by Itri and
Colwell [53].

Whole cell patch clamp electrophysiology
Methods are similar to those described previously
[32,33,53]. Briefly, electrodes were pulled on a multistage
puller (Sutter P-97, Novato, CA). Electrode resistance in
the bath was typically 3–6 MΩ. The standard solution in
the patch pipette for measurement of spontaneous posts-
ynaptic currents contains (in mM): K-gluconate, 112.5;
Hepes, 10; MgATP, 5; NaCl, 4; EGTA, 1; MgCl2, 1; CaCl2,
0.5; GTP-Tris, 1; Leupeptin 0.1; Phosphocreatine 10. The
pH was adjusted to 7.25–7.3 using KOH and the osmola-
lity to 290–295 mOsm using sucrose. For measurement of
amino-methyl proprionic acid (AMPA) and N-methyl-D-
aspartate (NMDA) currents, Cs-methanesulfonate was
used instead of K-gluconate in the pipette. Blockers of
ionic channels were added to the bath solution to inhibit
potassium (K+) currents (tetraethylammonium-chloride,
TEA 10 mM replacing equal amounts of NaCl), Ca2+ cur-
rents (cadmium, Cd2+, 25 µM), and sodium (Na+) cur-
rents (tetrodotoxin, TTX, 0.5 µM). Whole cell recordings
were obtained with an Axon Instruments 200B amplifier
and monitored on-line with pCLAMP (Axon Instruments,
Foster City, CA). To minimize changes in offset potentials
with changing ionic conditions, the ground path used a
KCl agar bridge. The liquid junction potential was meas-
ured to be -14 mV. Cells were approached with slight pos-
itive pressure (2–3 cm H2O) and offset potentials were
corrected. The pipette was lowered to the vicinity of the
membrane keeping a positive pressure. After forming a

high-resistance seal (2–10 GΩ) by applying negative pres-
sure, a second pulse of negative pressure was used to break
the membrane. Whole-cell capacitance and access resist-
ance were neutralized and data acquisition was then initi-
ated. Series and input resistance were monitored
repeatedly by checking the response to small test pulses
(10 mV) from the holding potential (-70 mV). Series
resistance was not compensated and the maximal voltage
error due to this resistance was calculated to be 6 mV. The
access resistance of these cells ranged from 15–40 MΩ
while the cell capacitance was typically between 6–18 pF.

Under voltage -clamp (Membrane potential = -70 mV) the
holding current was monitored throughout the experi-
ment. Spontaneous postsynaptic currents were analyzed
using the MiniAnalysis program (Synaptosoft, Decatur,
GA). The software was used to automatically record the
number and peak amplitude of sEPSCs recorded in gap-
free mode of pCLAMP software. Each automatically
detected event was then manually checked to ensure that
the baseline and peak were accurately determined. The
mean frequency and amplitude of the EPSCs were then
calculated for each neuron during 60–360 sec sampling
periods.

Calcium imaging
Methods are similar to those described previously [5,32].
In brief, a cooled charge-coupled device camera (Prince-
ton Instruments, Monmouth Junction, NJ, Microview
model 1317×1035 pixel format) was added to the Olym-
pus fixed stage microscope to measure fluorescence. In
order to load the calcium-indicator dye into cells, slices
were incubated with membrane permeable fura2 AM (50
µM) at 37°C for 10 min. The fluorescence of fura2 was
excited alternatively at wavelengths of 357 nm and 380
nm by means of a high-speed wavelength-switching
device (Sutter, Lambda DG-4). Image analysis software
(MetaFlour, Universal Imaging, Downingtown, PA)
allowed the selection of several regions-of-interest within
the field from which measurements were taken. In order
to minimize bleaching, the intensity of excitation light
and sampling frequency was kept as low as possible.

Lighting condition
For the electrophysiology and calcium imaging studies,
mice (C57BL/6) and rats (Sprague -Dawley) were main-
tained on a daily light-dark (LD) cycle consisting of 12 h
of light followed by 12 h of dark at constant room temper-
ature for at least 10 days prior to the experiment. It is
already well established that cells in the SCN continue to
show circadian oscillations when isolated from the ani-
mal in a brain slice preparation. The rodents were killed at
the time that the lights would have turned off in the LD
cycle, which is defined as Zeitgeber time (ZT) 12. The data
from all animals were collected between ZT 15–17.
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Drug application
Solution exchanges within the slice were achieved by a
rapid gravity feed delivery system utilizing an electroni-
cally-controlled valve. In our system, the effects of bath-
applied drugs begin within 15 sec and are typically com-
plete by 2 min. In this study, AMPA and NMDA were
applied for 120 sec with maximal responses typically
observed approximately 90 sec after start of treatment.
PACAP, FSK, and H89 were applied for 240 sec and in
some cases, these treatment were immediately followed
by application of AMPA or NMDA.

The PACAP (1–38) was purchased from American Peptide
Company (Sunnyvale, CA) whereas maxadilan and M65
were generously provided by Dr. E. Lerner (Harvard Uni-
versity, Cambridge, MA). The peptides were dissolved in
distilled water as concentrated stock solutions. H89 was
purchased from Calbiochem (La Jolla, CA) while all other
chemicals were purchased from Sigma (St. Louis, MO). All
glassware and perfusion lines were silanized using Sigma
-Cote and blocked with 2% protenate solution (Baxter
Healthcare Corp., Glendale, CA) to prevent unspecific
binding of the peptides.

Statistical analyses
Between group differences were evaluated using t-tests or
Mann-Whitney rank sum tests when appropriate. Values
were considered significantly different if P < 0.05. All tests
were performed using SigmaStat (SPSS, Chicago, IL). In
the text, values are shown as mean ± SEM. For the electro-
physiology, each data point represents one neuron in a
different slice. We sometimes recorded from two slices of
the same animal. For the imaging experiments, Ca2+ levels
from 6–20 neurons were measured simultaneously. Each
group of data is collected from at least 4 animals, with n
representing the number of cells recorded.
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