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Abstract

Background: The "inverse" problem is related to the determination of unknown causes on the
bases of the observation of their effects. This is the opposite of the corresponding "direct" problem,
which relates to the prediction of the effects generated by a complete description of some agencies.
The solution of an inverse problem entails the construction of a mathematical model and takes the
moves from a number of experimental data. In this respect, inverse problems are often ill-
conditioned as the amount of experimental conditions available are often insufficient to
unambiguously solve the mathematical model. Several approaches to solving inverse problems are
possible, both computational and experimental, some of which are mentioned in this article. In this
work, we will describe in details the attempt to solve an inverse problem which arose in the study

of an intracellular signaling pathway.

Results: Using the Genetic Algorithm to find the sub-optimal solution to the optimization
problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling
pathway in the neuronal cell. The model is composed of mass action ordinary differential equations,
where the kinetic parameters describe protein-protein interactions, protein synthesis and
degradation. The algorithm has been implemented on a parallel platform. Several potential solutions
of the problem have been computed, each solution being a set of model parameters. A sub-set of
parameters has been selected on the basis on their small coefficient of variation across the

ensemble of solutions.

Conclusion: Despite the lack of sufficiently reliable and homogeneous experimental data, the
genetic algorithm approach has allowed to estimate the approximate value of a number of model
parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be

relevant for the reproduction of the available experimental data.

Background erated by a complete description of some agencies. Typical
The "inverse" problem is related to the determination of  inverse problems in electrocardiology are related to the
unknown causes on the bases of the observation of their  modelling of the human heart functional structure from

effects. This is the opposite of the corresponding "direct"  surface electrocardiogram signals (ECG) [1]; similar situa-
problem, which relates to the prediction of the effects gen-  tions are encountered in magnetoencephalography
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(MEG) and electroencephalography (EEG) [2,3]. In biol-
ogy, a classical example of the "inverse" approach is the
reconstruction of the three-dimensional structure of mac-
romolecules, using either x-ray diffraction, nuclear mag-
netic resonance (NMR) or prediction models [4-6].
Another typical biological application of inverse
approaches is the reconstruction of gene-regulatory net-
works [7,8].

The solution of an inverse problem entails the construc-
tion of a mathematical model and takes the moves from a
number of experimental data. In this respect, inverse
problems are often ill-conditioned as the amount of
experimental conditions available are often insufficient to
unambiguously solve the mathematical model. Moreover,
as model construction usually depends upon the minimi-
zation of specific functions, such as the system energy or
the difference between the model prediction and some
given experimental results, its solution does not necessar-
ily lead to a single global optimal solution but to a set of
optimal solutions, defining what is called the "Pareto
optimal frontier" in the space of solutions [9]. Additional
experimental constraints or theoretical methods are thus
necessary to further select within the solutions set. Typical
inverse problems concerns essentially the detailed deter-
mination of biochemical mechanisms underlying
observed phenotypes, for example molecular abundances
or morphological modifications.

In this work, we will attempt to solve an inverse problem
which arose in the study of a signalling pathway. Com-
pared to pathways of metabolic reactions, which are of a
limited size comprising up to a few hundreds of proteins,
signalling processes involve about 20% of the genome, i.e.
thousands of expressed proteins [10], most still unidenti-
fied and of unknown function. Protein signalling net-
works spread information throughout the cell and
mediate a number of fundamental processes [11-14]. The
growing availability of reliable genomic and proteomic
data, made it possible to build up protein interaction
maps (PIMs) of increasing complexity. New high-
throughput experimental and in silico technologies allow
us to monitor protein-protein and genetic interactions:
DNA and protein microarrays [15-17], two-hybrid sys-
tems [18-20], protein tagging techniques coupled with
Mass Spectrometry [21,22], phage display [23,24]. In sil-
ico methods also allow us to describe protein-protein (p-
p hereafter) interactions or the function of yet unclassified
proteins: new p-p interactions might be found on the base
of genomic sequence [25,26], using data mining method-
ologies [27,28], or predicting the composition of protein
complexes [29]. In this respect it is worth mentioning a
simple though successful method to detect new protein-
protein interactions by a comparative genomic analysis of
phylogenetic profiles: this approach is based on the

assumption that interacting genes tend to co-evolve in dif-
ferent organisms [30,31]. Protein's function can be pre-
dicted not only by sequence homology, but also on the
basis of their relationships with other proteins whose role
is already experimentally assessed [32,33] or by orthology
[34]. In order to model the time evolution of a signalling
pathway it is necessary to know:

e The species involved in molecular interactions, includ-
ing chemical reactions

e How the interactions connect the chemical actors and
form a signalling network

* How these interactions can be modelled

e The model parameters necessary to computationally
simulate the time behaviour of the system.

The mathematical form of the chemical interactions, the
model parameters and even the network topology are
often only partially known. This implies that model
approximations and numerical estimates and, whenever
possible, additional specific experimental measurements,
are necessary to make a numerical simulation feasible and
reliable. This is true whatever modelling techniques is
used, such as differential equations [35,36], cellular
automata [37], Petri Nets [38] or other hybrid methods
[39]. When creating a new model, before starting with
numerical procedures, it is necessary to make a survey on
all published kinetic data. These data may be found
directly in the journal articles, which requires a thorough
mining of the literature, or on in annotated databases, col-
lecting and structuring information on p-p interactions.

Only at the end of this phase, further experimental activity
and the techniques for parameter's estimate come into
play: wherever possible, purposely designed experiments
should be carried out in order to directly measure
unknown Kkinetic parameters or to use these measures as
constraints for the estimate's algorithm or to decide
between alternative models. If new experiments cannot be
done, the parameter estimate must rely just on literature
data.

Databases of protein interactions

Protein interactions maps, partially stored in public data-
bases, contain mainly qualitative information on the con-
nectivity of intracellular p-p interactions, while
quantitative data on the kinetics of interactions and reac-
tions are still largely unavailable, except for enzyme kinet-
ics. There are to date a number of public databases sites
containing qualitative data on protein interaction maps:
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¢ iHOP: genetic and protein interactions are extracted by
text mining of literature abstract [40,28]

e Amaze: it is built upon a complex object-oriented data
model that allows it to represent and analyze molecular
interactions and cellular processes, kinetic data can poten-
tially be inserted into the data structure [41,42]

¢ IntAct: this offers a database and analysis tools for pro-
tein interactions [43,44]

e Kegg: it is a large database that contains also several sig-
nalling pathways [45,46]

¢ DIP: it contains interactions from over 100 organisms
[47,48]

e IMEx: it is a consortium of major public providers of
molecular interaction data, current members are DIP,
IntAct, MINT, MPact, BioGRID, BIND [49]

® Reactome: this is a curated database of biological path-
ways in human beings [50,51]

It should be remarked that a great care has to be payed
when dealing with qualitative data: they are often depend-
ent on specific experimental conditions and most of them
obtained in unicellular organisms. A straightforward
extrapolation of these data to higher organisms is often
quite unreliable [52]. Moreover, p-p interactions data in
molecular networks are usually obtained from large scale
or high-throughput experiments, where spurious interac-
tions are very likely to be collected; computational valida-
tion techniques are thus needed to prune primary datasets
[53,54]. The same holds when one tries to translate
genetic interactions into the corresponding p-p interac-
tions: the two networks have quite different topological
properties [55].

The situation is even worse when one analyzes quantita-
tive p-p interactions data in public repositories: the total
amount of experimentally-derived kinetic data is only a
small percentage of what would be needed to characterize
the topology data (i.e. the p-p interactions map). Further-
more, available kinetic constants are often extracted from
a single publication where they were measured in vitro,
while the kinetics of interactions is highly dependent on
experimental set-up and environmental conditions, such
as PH, temperature, concentration of other proteins in the
cellular environment. It is always advisable to assume that
the measured quantities indicate more realistically ranges
rather than precise values and care must be used to insert
these values into large-scale network models [56]. Never-
theless some investigation of biochemical reactions can
anyway be carried out by taking into account the uncer-

tainty of kinetic data [57,58] and by using approxima-
tions where some values are missing [39].

This point, however, is already a major concern of the Sys-
tems Biology: several programs are being performed
aimed at producing sets of validated data, homogene-
ously refered at specific organisms in well defined and
standardized thermo-chemical conditions. The standardi-
zation of experimental data sets and of experimental
models is the object of an intense debate in the Systems
Biology community. There is a wide consensus on the
need of standards but also on some drawbacks for a gen-
eral use of standards as the best research framework in any
case. Anyway the way towards a deeper and deeper though
slow integration of existing datasets, modelling languages
and methodologies appears to be set, as witnessed for
example by the wider and wider use of SBML as a language
to describe biochemical models, or by the integration of
previously separated datasets into a single larger database
compliant with new criteria established by international
consortia. One example of the latter case is the HUPO -
PSI initiative [59], aimed at establishing a common for-
mat to represent protein-protein interactions and to syn-
chronize all the already existing databases, as it happened
for the genome data: MINT, DIP, BIND and IntAct (see
below) already implemented the PSI standard to publish
molecular interactions.

p-p interactions in signalling pathways can be divided
into two main categories: (a) binding interactions that
involve no chemical modifications and (2) biochemical
processing, such as phosphorylation and phosphatiza-
tion. On one hand, the few public sources of kinetic data
on binding protein interaction often provide only dissoci-
ation constants, i.e. values describing an equilibrium state
that offer only partial information about the dynamics of
the reaction. To our knowledge, only the KDBI database
[60,61] was specifically created to store binding and dis-
sociation rate constants. Other repositories, such as MINT
[62,63] and BIND [64,65] offer few examples of dissocia-
tion constants. On the other hand, biochemical modifica-
tions occur in enzymatic reactions, therefore kinetic data
can be found in databases entirely devoted to enzymes,
first of all Brenda [66,67] where kinetic constants are spec-
ified for several organic substrates, and partially the above
cited KDBI.

A further source of signalling pathways and of p-p interac-
tions data, including the kinetic part, are the repositories
of biochemical models, though in these models not all the
kinetic parameters were measured experimentally and
some of them had to be numerically estimated. Among
them:

Page 3 of 19

(page number not for citation purposes)



BMC Neuroscience 2006, 7(Suppl 1):S6

¢ Biomodels.Net: it has been published very recently and
it is currently the most curated database of biochemical
models, offering tested and verified models in several
standard formats included, SBML, CellML and XML
[68,69]. A standard for model annotation and curation of
biological models called MIRIAM has been recently pro-
posed [70];

e JWS Online: another curated repository of models in
SBML and PySces formats [71,72]. JWS creators are among
the main contributors to the new Biomodels.Net data-
bases and to the MIRIAM initiative;

e CellML: repository of biochemicals models in CellML
format [73,74]. The CellML team contributes to the
MIRIAM project;

e DOQCS: this is a large repository of signalling path-
ways, where all the reactions and kinetic parameters are
directly shown, furthermore the models can be down-
loaded in the Genesis language [75,76]. Also DOQCS
curators contributed to the MIRIAM project;

® ModelDB: this is a repository of detailed biochemical
and electrphysiological processes in the neuronal cell: the
models are written in the Genesis language and Neuron
languages [77,78].

Experimental measures of kinetic parameters
The measure of protein activation level is of paramount
importance to monitor signalling processes. Several meth-
ods exist to quantitate the concentration of protein spe-
cies, such as immunoblotting, ELISA, radioimmunoassay,
protein arrays. If a cellular system is sampled several times
over the duration of a given signalling process, a time
series can be composed describing the time course of a
concentration, for example that of a phosphorilated pro-
tein. Radioimmunoassays are very sensitive methods but
are even complex, expensive and dangerous to set up; pro-
tein arrays offer the advantage of a high throughput
approach, while ELISA and immunoblotting are easier to
implement and, thus, widely used, though they allow a
lower threshold of detection when a very low concentra-
tions of radioactive compounds is present [79]. The exper-
imental error of quantitative immunoblotting can be
significantly reduced by computational techniques of data
analysis, error estimate and simulation: these allow to
monitor activated signalling pathways in real time and to
discriminate between different models.

Enzymatic reactions can be monitored, nowadays, in a
high throughput scale both in vivo and in vitro: this
allows us to measure kinetic parameters characterizing
fundamental steps in signalling pathways, such as binding
and removal of phosphate groups by kinases and phos-

phatases. Bioreactors are widely used to perform enzy-
matic reactions and other biochemical processes but their
use for a real time monitoring of products is limited by the
sampling process. More recent modified reactors allow a
real-time sampling of multiple reactions in vivo over a
short reaction time: the reaction broth flows at constant
velocity along a thin pipe where spilling at uniform space
intervals corresponds to uniform time sampling. In this
system the samples can be rapidly quenched and analyzed
by mass-spectrometry techniques [80]. Also arrays of
nanolitre wells can be used to follow the time course of
multiple enzymatic process by the use of optical tech-
niques such as fluorescence and bioluminescence [81].
The analysis of reaction mixtures by mass spectrometry
methods makes the use of chromophores and radiolabel-
ling unnecessary, since even the addition of a phosphate
group to a large protein can be detected as a precise mass
shift in the spectra. In vitro multiplexed assays can be per-
formed on protein chips that are then directly analyzed by
surface-enhanced laser desorption/ionization time-of-
flight mass spectrometry (SELDI-TOF MS) to monitor
enzyme activities [82]. Alternatively complex protein mix-
tures can be immobilized on micro-beads, where the
enzymatic reactions can take place and be monitored by
MALDI mass spectrometry [83]. A more difficult issue is to
measure kinetic parameters describing binding of proteins
without chemical processing, such as ligand-receptor
interactions or the formation of protein complexes. Two
techniques allow us to calculate kinetic rate constants of
binding an unbinding by fitting measured response
curves. The Surface Plasmon Resonance (SPR) allows us to
measure kinetic constants in vitro in a label-free environ-
ment. One of the reactants is immobilized on the sensor
surface usually coated with a thin gold film, while the
other is free in solution: the behaviour of a polarized light
beam hitting the surface in conditions of total internal
reflection depends on the refractive index of the surface,
that in turn depends on the binding state of the reactants.
In essence the SPR measures the angle or the wavelength
of the reflected light at which a resonance takes place
between the light and the metal electrons: whose changes
correspond to the amount of bound molecules. The SPR
is already used for high-throughput measurements
directly on protein arrays [84-86]. Using a completely dif-
ferent approach called fluorescence cross-correlation spec-
troscopy (FCS) the kinetics of binding can be quantified
directly in living cells. Fluctuations of fluorescence signals
can be detected in a very reduced volume, less than a fem-
tolitre, and using a very low fluorophore concentration,
up to 5 nM i.e. around 3 molecules/femtolitre, by the use
of a tightly focused laser beam. The investigation of the
autocorrelation function of the fluorescence signal pro-
vides information about the reaction kinetics, the diffu-
sion rates and the equilibrium state. With FCS it is feasible
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to study at a single molecule level a ligand-receptor inter-
action with no need of any isotope labeling [87,88].

"In silico" parameter's estimate

When only a few kinetic parameters are available to
implement a model of a signaling network, one might
resort to attempting a "theoretical" estimate of these val-
ues. The attempt could be performed, in principle, by
using an "inverse problem" approach, i.e. by optimizing
the unknown parameters of a reaction's model in order to
obtain the best possible agreement between simulated
and experimental data.

This is the aim of the present work. We devise a method-
ological workflow (and the corresponding numerical and
computational tools) to estimate the unknown reaction
constants of a model signalling pathway by starting from
(a) a given set of known data of reaction constants and (b)
experimental results of the time course of some biochem-
ical species involved in the reaction.

An intracellular signal transduction pathway in the neuro-
nal cell was used as a model system to implement the pro-
posed parameter's estimate procedure.

The chosen pathway is a protein network downstream of
the neurotrophic receptors Trk and P75 [89], the Fas
receptor regulating an apoptotic cascade [35], the EGF
receptor expressed in the CNS [90,91] and in PC12 cells
[92,93]. The network structure is based on current litera-
ture. The pathway can be divided into two main intercon-
nected sub-systems: an apoptosis pathway and a
neurotrophic receptors activated pathway. Neuronal
apoptosis can be initiated in three different manners, all
leading to the activation of executioner caspases, the effec-
tors of the apoptotic process that kill the cell by irreversi-
ble proteolysis of critical cellular constituents: survival
factor withdrawal, stress factors and receptor mediated
signaling cascade [94,35,95]. In this model the survival
factor withdrawal is taken into account by the connec-
tions between the two sub-networks, the apoptotic and
the neurotrophic driven one, which includes the TRK,
EGFR and P75NTR receptors the stress factors are also
considered by the presence of a mitochondrion acting as
a synthesis machinery for pro-apoptotic proteins (Fig. 1).
The signaling pathways forming the network can be acti-
vated in several ways; in our model, we chose to trigger the
signalling process by the activation of the receptors
upstream of the pathways as a consequence of the binding
of specific ligands.

The p-p interactions, such as molecular binding, phos-
phorylation/dephospshorylation or chemical transforma-
tions, are described using first order non-linear ordinary
differential equations, which take into account also syn-

thesis and degradation processes. The space variable is
neglected in this model, since proteins are considered to
be close enough to justify the approximation of a geomet-
rical point. The release from the mitochondria was con-
sidered to be mathematically equivalent to an additional
protein synthesis [94,35]. In this model gene transcrip-
tion was neglected, owing to the time scale chosen to sim-
ulate the temporal evolution of the system, within 60
minutes time. Reactions are treated as a one-step process.
For binary activation and inactivation reactions, the fol-
lowing second order kinetics scheme was used, where pro-
tein A activates protein B:

A+B—Law 5 A4 B (1)

The activation rate of protein B is : v, = K., [A][B]. In the
case of binding reactions, resulting in the association/dis-
sociation of protein complexes, the following one-step
reaction scheme was used, resulting in a p*-order kinetics,
where p equals the number of components of the protein
complex C;, with forward and reverse rate constants K and
K1 respectively:

K.K_,

C+C+...+C, P (2)

Thus the association rate is v, = K [C,] [C,]...[C,] and the
dissociation rate is v, = K ;[P].

Each of the N = 98 nodes of the network is described by
the two independent variables P;and x; (i = L...N): the first
refers to the total concentration of the protein species, the
second to the concentration of the active fraction of that
species. Each protein species i will thus follow a time evo-
lution given by two coupled reactions:

dx; (t
Llif ) = z Vprod,x; T z Veons,x; ( 3)

dpP;(t
;—E) = 2 Vprod,p, + Z Veons, P, ( 4)

where vy, 4(Veons.a), With @ = x;, P;, represent production
(consumption) reactions having the a-species as object.
The complete system of equations describing the system

assumes the following explicit mathematical structure:

dxi(t) _ 0, S Xlin. e activ N inact NG Ppolin NGy
T = O K K P = )= XK L+ 3 3 K T (5)
j=1 j=1 j=1 =1 r=1 m=1
NP, NC
dP(t) _ 0 e Xin. e Plin. L N N pepolin T4
il A SN Xlin . Plin .. polin
i =07+ Y K+ YK+ Y Y Kijr IT *u (6)
j=1 j=1 j=1 r=1 m=1
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Scheme of a model signaling network. Scheme of the signaling network used to demonstrate the validity of the parameter
estimate method. The network consists of a series of proteins (the nodes) linked by different types of unary, binary or multiple
molecular interactions (shown as the edges of the network). The role of the mitochondrion (in purple) is taken into account.
Binding protein-protein interactions are shown by green edges between the nodes, activation and deactivation interactions are
in blue and red, respectively, chemical transformations are shown by purple dotted lines, while the release of proteins from the
mitochondria in shown in solid purple lines. The signaling process can be activated by the binding of ligands (in grey) to recep-
tors. Every compound is identified by a name and a numerical code.

N in the number of nodes, NP, is the number of different

interactions involving the nodes i and j, NC;;, is the

ijr
number of components when i is a protein in complex
with protein j and the Kj;j represent the different rate

constants. The r index accounts for different interactions
between nodes i and j, when existing. The zero-th order

terms QY and @Y include the protein synthesis and the

release from the mitochondria processes, the linear terms
include the protein degradation, chemical autoprocessing
and protein complex dissociation; the quadratic terms
take into account the activation and de-activation of pro-
tein P, the polinomial terms describe the protein associa-

tion into larger complexes. No mass conservation
constraint has been imposed to the system.

In our approximation we considered both the topology of
the protein interaction map and the kinetic parameters as
constant in time, i.e. each protein keeps the same neigh-
bours during the time evolution of the system and inter-
acts with them with constant strength. We decided to
completely assign the connectivity matrix of the network
on the basis of the existing experimental data. On the
other hand, the kinetic parameters were largely unknown
on the basis on the same information sources: as a conse-
quence, in this application, the object of the "inverse
problem" are the unknown model's constants. The
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"inverse problem" has been implemented with the fol-
lowing scheme:

1. eqgs.(5-6) are solved and the time course of variables P,
and x; (i = 1...N) are calculated for a given set of model's
parameters

2. the predicted time course of certain quantities is com-
pared with the corresponding experimental data and a
specific "distance" between time-courses evaluated

3. procedure is iterated up to minimizing that distance

Although, at least in principle, the strategy is simple, in
practice the space of parameters to be estimated is very
large, thus the strategy of points (1-3) above must rely on
the availability of an efficient optimization algorithm. We
have resorted to choose Genetic Algorithms (GA) for a
number of reasons which will be highlighted in the fol-
lowing section.

GA: generality, numerical and computational
implementation

The genetic algorithm (GA) is a programming technique
that mimics biological evolution as a problem-solving
strategy. Given a specific problem, the input to the GA is
a set (called a "population") of potential solutions (called
"individuals") to that problem. Each individual contains
a "genome" able to provide a sub-obtimal solution to the
problem. This ability could be quantified if a specific fit-
ness function is defined, able to quantify how much an
individual, by means of its genome, is fit for the solution
of the optimization problem (i.e. to measure the "dis-
tance" between the sub-optimal and the optimal solu-
tion). The purpose of the GA is to produce successive
population of individuals which are generated with the
aim of increasing, as much as possible, the fitness of their
individuals, i.e. their ability to solve the optimization
problem by decreasing that "distance". This is done by
producing successive populations of individuals by using
the same procedures of the natural selection: mating and
mutation. In the GA workflow, given an initial population
of individuals, these are evaluated and classified accord-
ing to their fitness. A selection rule is then defined to
allow mating of couples of individuals, that mix their
genomes, to form new ones (a further population) and an
appropriate frequency of mutation of the genomes is
defined, to introduce "new tracts" into individuals
(which, in turn, would have been composed only by tracts
coming from previous populations). If selection rules for
mating and frequency of mutation are appropriatly cho-
sen, the GA produces successive sets of individuals (" gen-
erations") which are progressively more and more fit to
the optimization problem. In other words, individuals are

better and better approximation of the optimal problem's
solution.

The " inverse problem" we have attempted to solve starts
from the description of a signalling network in terms of
biochemical interacting species and reaction's constants.
After a mining procedure to discover the value of the
known reaction's constants, the system of egs. (5-6) can
be solved, by setting, for the unknown reaction's con-
stants, an initial gauge of values. The solution of egs.(5-
6), in terms of functions describing the predicted time
course of each of the system's variables (i.e. the concentra-
tion of all the biochemical species of the network), is thus
strictly related to the intial set of reaction's constants. If
one defines, as individual of the GA, the complete set of
reaction's constants (the ! known constants and the N - |
unknown constants), its ability to produce an optimal
solution to the problem can be measured by evaluating
the " distance" between the predicted time-course (f,,,) of
some variables and that effectively measured by an exper-
imental test of the same variables on that network (f,,,).
Formally, a distance between the two functions represent-
ing the j-th variable can be defined as follows:

dj = g(‘fj(ﬁred) (i) - fj(exp) (i)‘) (7)

where t is the (discrete) time length of the trajectories
spanned by the variables. If one has k experimentally
measured variables, the overall distance between that
solution and the "optimal" solution would be

a-34 (5)

Eq.(8) can be thus retained as the "fitness" function of the
considered individual; one can thus measure its "dis-
tance" from the "optimal" solution. Indeed, a more gen-
eral formulation of the fitness function could be given by
attributing "empirical" weight factors « to each variable,
as to produce a different impact on the overall d value

k
d=Y od; (9)
im1

The aim of the GA is to produce solutions which progres-
sively reduce the value of the distance of its individuals.
The scheme of producing successive "generations" of indi-
viduals can be resumed as follows:

1. start with a set of initial N individuals {K;, i =1, n}, each
consisting of the same I known constants and by a
number 7 - [ of randomly selected guesses of the unknown
constants (Fig. 2). Each value of K; is a real number in the
interval [10-5,109]. The interval was chosen on the basis of

Page 7 of 19

(page number not for citation purposes)



BMC Neuroscience 2006, 7(Suppl 1):S6

Network of interacting proteins

Matrix of kinetic

Architecture

Application of “genetic operators” to

parameters the “genomes”, the sets of unknown
kinetic parameters{ K;; }
| Pt P2 ... P7
P1 | Cu Cn

Next generation

Population 1 / CPU1 Population 2 / CPU2

cross-over

L

migration
Genome = {K,,....K }

Population 3 / CPU3

4:
insufficient
fitness,
iterate

Calcultation of the Fitness Function

—+—experimental
= simulated
ey,
o

1T

Simulated kinetics of protein

concentrations Fitness evolytion of the best individual

.

|

., o

N .

i

|
activity

time

fitness,
GA
saturates:
end
procedure

Figure 2

Genetic algoritm scheme. Flow chart of the estimate procedure using the genetic algorithm (GA). Every unknown model
parameter is called a " gene", while the whole set of parameters to be estimated is defined as the " genome". Every genome is
contained within an " individual", the computational entity able to " evolve". An ensemble of genomes corresponds to a "popu-
lation". The GA procedure begins with an initial random guess of the parameters values used to run a simulation of the model
network. This first step is iterated for all the individuals belonging to different populations. For each individual, the simulated
time course of the concentrations for specific proteins are compared with the experimental measures and the distances
between the functions are calculated. Every individual is thus related to a fitness index, measuring the degree of compatibility of
the genome with the experimental constraints. A small number of individuals are selected based on their fitness but also on
probabilistic rules: they will have the genomes randomly mutated by genetic operators, giving birth to a new offspring that
enters the next generation. At each round the plot describing the evolution of the best fitness computed until then is updated:
when it clearly saturates the algorithm stops and the genome corresponding to that fitness is the solution of the algorithm.

a reasonable number of kinetic values of protein-protein
interactions published in the literature

2. for each individual, evaluate the distance d of eq.(8)

3. select, according to some defined rule, the individuals
to be mated to form the new generation of individuals.

4. perform the mating procedure as follows: given two dif-
ferent individuals {KA(i)} and {KB(i)}, we randomly
select the index m (I <m) and join the two individuals to
produce a new individual {KA(i + 1)} such as

{KAG+1)} = (K (1), K5 (1), K7 (D), K (1), K (7)) (10)
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The parameter estimate does not include the topology of
the network, that is the connectivity matrix is considered
as a constant of the system and no interaction parameter
is allowed to go to zero during the optimization proce-
dure. The experimental data used as model constraints to
optimize the system are the experimental time course of
the concentrations of the active fraction of ERK-1, c-Raf,
MEK, PKC-iota proteins [96-98]. These data were
obtained measuring the phosphorylation level of these
proteins by optical methods, following delivery of NGF to
the cell. They are used to calculate the Fitness Function,
upon which the GA is based. The optical signal were sam-
pled every 2 minutes for 1 hour, that is a total of 30 sam-
pling points for each protein were used to fit the system.
The whole set of model parameters includes 278
indipendent values, of which 15 were extracted from the
literature and the other were fitted using the GA.

The algorithm starts assigning every individual with ran-
dom genome. The initial genes g; were randomly gener-
ated in the following manner: g;= 10*where & comes from
a flat (white noise) distribution in the range a € [-5, 0].
This guarantees that the distribution of the initial param-
eters is flat in the logarithmic scale. The range is expanded
in proportion to the number of components NC where
the node (i) is a protein complex and if NC > 2: the range
becomes a € [-5 * (NC - 2), 0].

The Fitness Function F() is here defined, for each individ-
ual, as the inverse of the squared Euclidean distance
between the experimental time course of the concentra-
tion of the activated fraction of ERK-1, c-Raf, MEK, PKC-
iota proteins (see above) and the simulated time course
for the same species, obtained using the genome
{K;,...K,} of the individual (Fig. 2, step 2) as parameters
set; this distance is evaluated across the whole time inter-
val (60 minutes), with a sampling time of 2 minutes:

-1
Prp Ing

F(Ky . K) =] Y > (X3P () - x5 (1))

p=plt=t

(11)

Here p = p;...p,, indexes the protein species used for the

fitness evaluation, t = t,...t,, indexes the sampling times,

X;m (t) and x;im (t) are the experimental and simulated

time course of the concentration of the activated fraction
for protein species p. The fittest genomes, those with the
largest value of the Fitness Function, are given a greater
probability to be selected to give birth to the next genera-
tion of individuals. The probability Pi of selection of the
ith individual of the population is calculated as:

S;=FVY, i e {population} (12)

P = 5 (13)

 max{S;,ie population}

where 104 <T < 1 is a constant parameter, used to shape
the distribution of the probabilities. It is worth underlin-
ing here that the best individuals tend to be selected at
each generation, but the probability distribution gives any
individual at least a small chance of being selected. The
best individuals, then recombine their genes by the cross-
over (Fig. 2, step 4), exchanging randomly selected but
corresponding segments of the genomes, and eventually
the offspring form the next generation (Fig. 2, step 5). The
genes of the offspring are also allowed to randomly
mutate with a low probability 0.005 <P,,,, < 0.04. The
individuals are distributed among NSp sub-populations,
each containing NI of individuals, in our case NI = 16 and
7 < NSp < 33. The evolution process takes place independ-
ently within each sub-population at each generation.
Every NM generations, with NM of the order of the sub-
population size, MI of the best individuals in each popu-
lation, again selected according to a probabilistic rule,
move into a different sub-population, there replacing oth-
ers that on their turn entered another sub-population: MI
is of the order of 10%-30% of NI. This "migration" oper-
ator allows a sub-population to partially renew its genetic
pool and tends to fasten the evolution process. The algo-
rithm keeps in memory the "optimal" genome and the
corresponding fitness, that is the best individual out of all
the sub-populations obtained until that stage in the evo-
lution process: these are compared with the best genome
and corresponding fitness in the current generation: if the
new fitness is better the optimal genome is replaced by the
new one. The plot of the optimal fitness versus the gener-
ation number describes a monotone non-increasing func-
tion: when the curve derivative saturates, the procedure
comes to an end and the individual corresponding to the
optimal fitness provides the solution genome.

The GA in intrinsically parallel, thus the necessary compu-
tation can be very efficiently distributed over several
CPUs. The GA was implemented on a cluster of Alpha
CPUs, using the Fortran 90 language and the MPI proto-
col, under Linux operating system. In this implementa-
tion each computational node stores the genomes of a
single sub-population, which evolves independently,
except when there is a migration of individuals. In that
case genome vectors are exchanged between the nodes
(Fig. 2, step 4). In order to optimize the distribution of the
computational load, data communications were reduced,
which was exactly compatible with rarely occurring
genome migrations.
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Results and Discussion

Results

The system under investigation does not guarantee that
the inverse problem has one unique solution, using the
chosen experimental constraints. Therefore we must
assume that the GA will find not one single solution but
one ensemble of solutions, formed by many sets of model
parameters {K,...,K,}. The ensemble describes a small
sub-space within the entire space of parameters. We
decided to sample this sub-space to study the properties of
the solutions. The first step in this work was to obtain sev-
eral numerical estimates of the set of unknown kinetic
parameters. The second step was the analysis of the prop-
erties of a single solution, then the analysis of the collec-
tive properties of the ensemble. Eventually one solution
was used as the best estimate of the kinetic parameters, to
compare the simulated behaviour of the network with
independent experimental data, to assess the reliability of
the method. The genetic algorithm was started using each
time different random genomes.

The time evolution of the fitness belonging to the optimal
individual is a non-increasing function, with an envelope
following a decreasing exponential like shape (Fig. 3)

When the time derivative approaches zero, the algorithm
ends and the current optimal individual is considered to
be the estimated solution of the problem. The time of
computation necessary to reach a good level of approxi-
mation decreases with the number of used CPUs, as it is
shown in Fig. 3. This is reasonable since the larger the
number of computational nodes in the parallel imple-
mentation, the larger the whole population and the prob-
ability of selecting a fit individual within a smaller
amount of generations. The calculation of the fitness
index includes different terms and does not describe in
details how similar the simulated and experimental
behaviour become as the genetic algorithm proceeds in
increasing the fitness of the best individual. Therefore at
the end of the algorithmic computation, for each solution
the time evolution of the concentration for the proteins
chosen as experimental constraints were visually com-
pared to the corresponding simulated behaviour, as

Time course of fitness index, averaged over several GA sessions
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Figure 3

Fitness index. Time evolution of the fitness index, during the calculation of the optimal sets of kinetic parameters. The dia-
grams describes the fitness evolution of the optimal individuals as a result of parallel calculations on 8, 16 and 30 CPUs and are
the average over different session, this explains the small discontinuities in the decreasing trend. The time required to reach

the saturation decreases as the number of CPUs increases.
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shown in the example of Fig. 4, in order to discard mean-
ingless solutions.

Though the experimental and simulated data may appear
different, nevertheless, the essential dynamical features,
some transients and the following relaxation of the sys-
tem, are approximately described by the simulation. Since
no further significant improvements of the best parameter
sets could be obtained using the genetic algorithm, we can
attribute the differences to the incomplete connectiveness
of the model network, which make some protein concen-
trations unable to be sufficiently modulated by the activ-
ity of the rest of the network. This does not imply that this
algorithm proves to be unfit for estimating important
properties of the unknown parameters of the model. We
obtained a total of 36 solutions of the inverse problem,
each of them requiring few days of computation to be cal-
culated.

The initial random parameter sets were completely altered
by the genetic operators, both by the cross-over and the
random mutation, which affected at least once every ele-
ment of the genomes, therefore the final outcome of the
algorithm, the optimal genome, has lost every numerical
similarity with the initial parameter sets. These two points
together could have two kind of consequences: either all
the the reactions are necessary for a correct dynamics of
the network, or only few reactions dominate the dynamics
and guarantee that the chosen experimental constraints
are satisfied, while the other rate constants may just fluc-
tuate almost randomly. Further analysis, later in this arti-
cle, will show that the second hypothesis is probably the
correct one. Some more hints come from the calculation
of the proximity matrix of the logarithm of solution vec-
tors, whose elements are the non-squared Euclidean dis-
tances between all the couples of solutions genomes. We
have plotted the frequency distribution of the elements
(Fig. 5) and compared it to a the distribution of a large
ensemble of random vectors, generated using the same
criteria and value ranges as the initial genomes in first step
of the genetic algorithm.

The asymmetrical bell shape is typical of the distributions
of the distances between all the geometrical points con-
tained in a generic hypercube, here described by the
parameter ranges in the n-dimensional space, where n =
number of unknown parameters: for instance the same
distribution pattern holds even in two dimensions. The
two distributions have very similar shapes, though the
solutions are slightly shifted towards shorter distances, a
feature that is not surprising since the solutions belong to
a smaller sub-space of the cited n-dimensional hypercube,
thus the corresponding points in the parameter space are
closer one to the other. The fact that the distribution of
solutions is shifted of a small value, about 20% of the bell

width, suggests that probably only few parameters con-
tribute to this shift while the others are essentially ran-
domly distributed. After analyzing the solutions
parameter sets as static entities, separated from the net-
work dynamics they describe, they must eventually be
characterized on the basis of such dynamics. To make
again a genetic comparison, it is not sufficient to analyze
the "genotypes", the solutions, but rather the correspond-
ing "phenotypes", the time course of protein concentra-
tions. Each of solution parameter sets can be used to
simulate the signal transduction process in the network,
since it is considered to be a "realistic" set of kinetic
parameters. The dynamics described by each of the solu-
tions is slightly different, though, in any case, the time
course of protein concentrations meets the experimental
constraints used for the genetic algorithm. This similarity
can be explained by a closer investigation of the detailed
structure of such ensemble, to understand what explains
the similarities and, at the same time, the differences
among the simulated dynamics obtained with the differ-
ent estimated solutions. We computed the ratio, in the
logarithmic scale, between the standard deviation and
mean for each parameter K; belonging to the genome,
with i =1...N, and across the whole ensemble of computed
solutions {Solutions}, that is the vector of coefficients of
variation:

(14)

R - StdDev{log;, K} s € Solutions}, PC1N
Mean{log,, K}, s € Solutions}

where N is the number of parameters. The 17 parameters
showing a ratio smaller than 0.3 were considered as con-
served elements across the ensemble of solutions. This
threshold was chosen on the basis of the distribution of
the coefficient of variation of a variable X, where X is sam-
pled from a uniform distribution in the interval [-5,0].
The distribution of the coefficient of variation can be
approximated by a Gaussian density function N(g o)
with z2=2/+/12 and o= 0.07: the uvalue is the coefficient
of variation of the uniform distribution, while o is the
standard deviation of a random set of coefficients of vari-
ation obtained by sampling the uniform distribution in
the interval [-5,0] (Fig. 6). A coefficient of variation
smaller than 0.33 has a probability of random occurrence
< 0.0002, while the 17 parameters selected using the
genetic algorithm represent 6.5% of the whole (Fig. 7),
that is a coefficient of variation smaller the 0.33 have a
proability of occurrence of 0.065 in the solution set, there-
fore statistically significant.
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Simulated and experimental data. Comparison of experimental and simulated data. The experimental time courses of
concentration for the proteins used as constraints in the calculation of the fitness function, is compared with the correspond-
ing simulated behaviours.
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Proximity matrix of solutions. Normalized frequency histogram of the elements of the proximity matrix built by comput-
ing the non-squared Euclidean distance ||log,, K;, log o Kil|; ;= |, where {K} and {K} represent single solution parameter sets
and n is the number of unknown model parameters. On the abscissa the distance values. For comparison we show also the dis-
tribution of the proximity matrix for a large set of randomly generated K vectors.

The parameters highlighted in fig. 7 correspond to reac-
tions belonging both to he neurotrophic signal transduc-
tion pathway and to the apoptosis pathway: the Caspase-
8 and Caspase-9, final mediators of the apoptotic process,
are involved in this subgroup of reactions, as well as the
PKC protein, one of the " bridges" in this model between
the two main pathways of the network, other reactions
belong to the NGF-TRK signal transduction process. This
group of reactions spans all the typologies included in the
model: protein-protein activation/inactivation, protein
binding, binary chemical transformations, unary synthe-
sis and degradation rates. The conserved parameter values
appear as key elements to guarantee that the experimental
data used for the genetic algorithm estimate procedure are
met. Furthermore this implies that the same parameters

are required for a correct signal transduction, leading to a
simulated outcome in agreement to the experimental one.

We have also investigated the level of complexity of the
network dynamics through the evaluation of the eigen-
value spectrum and the eigenvectors of the Jacobian
matrix of the system of eqs.(5-6). The Jacobian was eval-
ued at a fixed time point (corresponding to t = 60 mins)
of a time simulation perfomed by using one parameter set
obtained by the GA procedure. The eigenvalue spectrum
spans 24 orders of magnitude, from 1022 to 102, with
about 75% of them being real negative values and 25%
real positive ones: this implies that the majority of kinetic
modes (eigenvectors) in the diagonalized system lead to
an exponential decay, though with a large spectrum of
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Distribution of the coefficients of variation of solution parameters. The coefficient of variation StdDev(log,,K;)/

Mean(log, oK), where {K};

=l.n

is any kinetic parameter, was computed for every parameter across the entire ensemble of solu-

tion sets. Their distribution is shown (red line). For comparison the distribution of the coefficient of variation of a variable X is
shown (green line), where X is sampled from a uniform distribution in the interval [-5,0]. The distribution of the coefficient of

variation can be approximated by a Gaussian density function N(z o) with 1£=2/+/12 and o= 0.07 (in blue): the x value is the

coefficient of variation of the uniform distribution, while ois the standard deviation of a random set of coefficients of variation
obtained by sampling the uniform distribution in the interval [-5,0] (Fig. 7). A coefficient of variation smaller than 0.33 has a
probability of random occurrence < 0.0002, while the |7 parameters selected using the genetic algorithm represent 6.5% of
the whole (Fig. 7), that is a coefficient of variation smaller the 0.33 have a proability of occurrence of 0.065 in the solution set.

decay rates. The components of the orthonormal 2N
eigenvectors along the original set of 2N coordinates x;, P;
describe how the nodes of the networks are involved in
the corresponding kinetic modes. In this respect 20 eigen-
vectors have significant components (larger than 0.1) just
along one of the coordinate, therefore the corresponding
dynamics involves essentially only one node of the net-
work, while other 57 eigenvectors have significant compo-

nents only along two coordinates corresponding to two
distinct nodes. On the other hand more than 50% of the
eigenvectors have significant components along 3 or more
coordinates, up to 12: they thus correspond to more com-
plex modes that involve a large number of network pro-
teins. Moreover many eigenvectors project on the same
coordinates, which means that many proteins are inolved
in different kinetic modes. In conclusion we can say that
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a group of small subnetworks exists, composed by one or
two nodes, that show a very simple increasing or decreas-
ing dynamics, but this group cannot describe in an
exhaustive way the system dynamics: only a complex rela-
tion between several kinetic modes can account for the
simulated bahaviour.

Discussion

Different methods for parameter estimate and fitting

GA has proven to be a powerful and successful problem-
solving strategy. It has been used, in fact, to solve NP-com-
plete optimization problems in a wide variety of fields
such as chemistry, biology, engineering, astrophysics, aer-
ospace, electronics, mechanical and electrical design, mil-
itary plans, mathematics, robotics and many others.
Notable examples of GAs applications in molecular biol-
ogy are in modelling of genetic and regulatory networks
[99,7,100], predicting protein structure and evolution

[101,102], classification of odorant molecules [103],
investigation of the metabolome [104]. We have chosen
to estimate the unknown parameters of our signalling net-
work model by minimizing the difference between the
simulated output of the model and the corresponding
experimental observations. The function to minimize is a
vector distance between experimental and simulated con-
centrations sampled along a time interval; the distance
depends on the whole set of model parameters. A number
of other numerical methods exist to minimize such mul-
tivariate functions: downhill simplex, direction set, conju-
gate gradient, variable metric, linear programming,
simulated annealing (SA) [105,106]. These methods have
the common feature of progressively modifying the same
function, until a minimum is reached. In particular, the
SA is a Monte Carlo non evolutionary strategy based on a
thermalization-equivalent process of the system, in fact it
is commonly used in computational physics to find
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minima of the energy states. At the heart of the method is
an analogy with the slow cooling of liquids, a process
called "annealing". A slow exploration of the energy land-
scape ensures that the absolute minimum is reached, if it
is unique. From another point of view, the SA could also
be consider a form of GA where a single individual evolves
alone by means of random mutations, without any cross-
over as no other individual is available. The SA and
another problem-solving technique called the hill-climb-
ing show some similarities to GAs: in both algorithms one
single solution is evolving, instead of a population of can-
didate solutions. These algorithms start with one single
random solution: at each round the candidate solution
can mutate and its fitness is evaluated: if it is better than
the previous one it is kept and passed to the next round,
otherwise it is discarded and the previous one is mutated
again. In the SA discarding a solution is based also on a
specific parameter called the temperature, that gives even
unfit solutions a non-zero probability of passing to the
next round. In a preliminary phase of our work we com-
pared the computational performances of the GA with the
SA to solve the same problem of parameter estimate in the
protein network. The SA was implemented in the classical
version and run on a single CPU: for the specific inverse
problem described in this work, the performances on the
GA were better than the SA even on a single computa-
tional node, since functional minima were found faster.
The existence of multiple solutions did not require explic-
itly the use of the SA. The GA is inherently parallelizable
because of the existence of many populations, each attrib-
utable to a different CPU in a multi-processor architecture
using the MPI protocol. The heaviest computational task
of the GA is by far the evaluation of the Fitness Function,
since the dynamics of the network must be simulated for
each individual at every generation, while the application
of the genetic operators is rather instantaneous, therefore
a good solution is to distribute the computation over
many CPUs running in parallel. To exploit in the best pos-
sible way the computing power, the computational load
should be equally distributed among the nodes: this was
obtained by assigning to the CPUs populations with uni-
form size. Furthermore it is recommended to minimize
the communications among the nodes, as a consistent
data transfer can considerably slow down the perform-
ance of the machine: here the data exchange is restricted
almost exclusively to the exchange of genomes during the
migration, which represents an absolutely negligible
amount of transferred data. Thus the nodes act as almost
independent entities and the performances of the GA
scale approximately inversely with the number of nodes,
that is the algorithm requires O(l/Cn) generations to find
the solution, where Cn is the number of computational
nodes.

Comparison of simulations with experimental data and multiple
solutions of the inverse problem

We believe anyway that the major limitation of this model
is not the degree of approximation used to describe pro-
tein-protein interactions but that some other biologically
relevant features are missing, such as the connections with
the gene transcription network and with other signalling
pathways and the role of the space diffusion, which may
be the subject of future improvement of the model. These
reasons should explain why this network is more a test
case for the implementation of the GA in the inverse prob-
lems domain than an accurate description of the neuro-
trophic and apoptotic signal transduction processes. It is
likely that other independent experimental data would
allow us to have an unambiguous selection among the
different solutions of the Pareto set, in two different man-
ners: either these data could be added as additional con-
straints from the beginning of the GA procedure, to
consistently reduce the Pareto set since the beginning, or
they could play the role of independent criteria to select
one single or at least a subset of proper solutions obtained
by the GA procedure as presented in this work. The mod-
elled signaling network must also be able to respond to a
variety of external stimuli, coming from the rest of the cel-
lular environment, as a consequence of this the diversity
displayed by these behaviours is compatible with the
existence of this ability. The lack of functional connec-
tions to other signalling pathways does not allow the net-
work to directly display these potential modalities of
response. A related point is the robustness of the system.
The optimal solutions belonging to the Pareto set corre-
spond to different dynamical evolutions, though all meet
the experimental conditions: this suggests that the net-
work shows some robustness since it is able to guarantee
the same signal transduction in many different condi-
tions, with very different combinations of protein-protein
interactions strength. The robustness is a fundamental
property of biological systems, essential for survival when
it is necessary to face dangerous situations and sudden
changes in the cellular environment.

Conserved kinetic parameters

At the end of this work we found out that a sub-vector of
the kinetic parameters is characterized by a small coeffi-
cient of variation

StdDev{log,o K} , s € Solutions} I21N

(15)

across the Pareto set of optimal solutions, where K; is a
model parameter value describing the iinteraction/reac-
tion. This is an important and informative result since
those parameters correspond to protein-protein interac-
tions and synthesis/degradation processes essential to
make the model correctly describe the experimental data

Mean{log,, K? s € Solutions}
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used as constraints for the parameter estimate procedure.
This sub-vector includes protein-protein interactions and
single protein reactions that could explain the robustness
of the network dynamics, across the whole Pareto set. The
sub-vector can be considered as composed by values
almost unambiguously estimated, within a reasonable
error, compared to the rest of the parameters. The exist-
ence of this sub-vector supports the idea that a sufficient
amount of experimental determinants could sufficiently
condition the inverse problem to allow a reliable estimate
of the whole parameter set. What we have done is in fact
to sample the space of solutions of the inverse problem
using a genetic algorithm: a larger number of experimen-
tal constraints would reduce the dimension of the space of
solutions.

Conclusion

In this work we have discussed the problem of mining,
measuring and estimating the value of parameters needed
in mathematical models describing the signalling proc-
esses mediated by protein-protein interactions. The lack
of kinetic interaction rates measured in reliable in vivo and
in vitro experiments is currently the major limitation to the
creation of complex models of signaling pathway. We
have attempted to show that biological information can
be also extracted from a model which, levaraging on
known kinetic parameters, attempts to provide a qualita-
tive estimate of unknown parameters, even in the case of
ill-conditioned optimization problems. We have thus
sampled the space of model parameters using the Genetic
Algorithm to estimate sets of unknown parameters. This
sampling procedure has shown the existence of a basin of
attraction for several kinetic constants. This might be
interpreted as a a necessary condition for the network to
produce a specific outcome of the time - course of its
components. The estimated value of some of the parame-
ters have shown a small coefficient of variation across the
set of solutions, though the high dimensionality of this
space allows to estimate realiable values and draw conlu-
sions only on these few parameters.
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