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Abstract
A current trend in neuroscience research is the use of stable isotope tracers in order to address
metabolic processes in vivo. The tracers produce a huge number of metabolite forms that differ
according to the number and position of labeled isotopes in the carbon skeleton (isotopomers) and
such a large variety makes the analysis of isotopomer data highly complex. On the other hand, this
multiplicity of forms does provide sufficient information to address cell operation in vivo. By the end
of last millennium, a number of tools have been developed for estimation of metabolic flux profile
from any possible isotopomer distribution data. However, although well elaborated, these tools
were limited to steady state analysis, and the obtained set of fluxes remained disconnected from
their biochemical context. In this review we focus on a new numerical analytical approach that
integrates kinetic and metabolic flux analysis. The related computational algorithm estimates the
dynamic flux based on the time-dependent distribution of all possible isotopomers of metabolic
pathway intermediates that are generated from a labeled substrate. The new algorithm connects
specific tracer data with enzyme kinetic characteristics, thereby extending the amount of data
available for analysis: it uses enzyme kinetic data to estimate the flux profile, and vice versa, for the
kinetic analysis it uses in vivo tracer data to reveal the biochemical basis of the estimated metabolic
fluxes.

Introduction: application of stable isotope tracer 
data in neuro -biology and -medicine
Metabolic networks of living cells produce the intricate
redistribution of carbon skeleton atoms of substrates. If
these substrates are artificially labeled by stable isotopes
(such as 13C) at specific positions, the reorganization of
carbon skeleton becomes measurable and its quantifica-
tion provides insight to the respective metabolic reactions.
Figure 1 shows an example of isotope exchange per-

formed by one of the reaction catalyzed by transketolase
(TK) in the non-oxidative pentose phosphate pathway
(PPP). Interconnection of several isotope exchange reac-
tions creates in each metabolite a variety of forms, which
differ by the number and positions of 13C isotopes (13C
isotopomers). A given set of metabolic fluxes produces a
specific distribution of isotopomer fractions, and conse-
quently, the isotopomer distribution indicates the under-
lying set of fluxes.
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Two techniques for isotopomer detection were used to
estimate metabolic fluxes in situ: nuclear magnetic reso-
nance (NMR) and mass spectrometry (MS). The different
kinds of data that can be obtained from NMR measure-
ments were classified by Mollney et al [1]. One-dimen-
sional 1H NMR measurement can provide positional 13C
enrichment, i.e. fraction of molecules with label in spe-

cific carbon position in a molecule [2,3]; multiple peaks
of one dimensional 13C NMR reveal groups of isotopom-
ers [4]. Two-dimensional 1H-13C NMR essentially allows
quantification of individual isotopomer fractions [5,6].
MS provides information on the fractions of different
mass isotopomers [7,8], i.e. groups of isotopomers with a
fixed number of labels regardless their positions. It detects

An example of isotope exchange in one of the reactions of non-oxidative pentose phosphate pathway catalyzed by transketo-lase: xu5p + r5p <-> g3p + s7pFigure 1
An example of isotope exchange in one of the reactions of non-oxidative pentose phosphate pathway catalyzed by transketo-
lase: xu5p + r5p <-> g3p + s7p. The catalytic cycle consists of a series of reversible elementary steps: binding of donor sub-
strate (xu5p) and formation (k1, k-1) of a covalent enzyme-substrate complex (E*xu5p); splitting (k2, k-2) of donor substrate and 
formation of a covalently bound intermediate (the α-carbanion of α, β-dihydroxyethyl-ThDP, the so-called 'active glycolalde-
hyde') and an aldose (g3p); both are localized in the active site of the enzyme (EG*g3p). This complex dissociates (k3, k-3) into 
the complex of the enzyme with active glycolaldehyde (EG) and the first product, free aldose (g3p). In the second half-reaction, 
active glycolaldehyde interacts with the other aldose (r5p) available in the reaction mixture (k4, k-4). The new ketose (s7p) is 
released from the enzyme-substrate complex after passing through the same reaction steps in reverse order (k5, k-5 and k6, k-

6). Large circles represent the protein molecule, while small linked circles represent the carbon skeleton of the metabolites. 
Two dark circles represent the part of substrate attached to the enzyme during whole catalytic cycle and to be transferred 
between ketoses. The gray circles are the parts released after ketose splitting. Stared circles are labeled carbon atoms. The 
scheme presents, as an example, formation of non-labeled g3p and double labeled s7p from xu5p labeled in first position and 
r5p labeled in third position.
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fewer isotopomers than NMR but is usually more sensi-
tive.

Stable isotope detection is now used for the metabolic flux
profile estimation in various areas of cell and tissue biol-
ogy, and neuroscience is not an exception. Implementa-
tions of the in vivo NMR measurements to study brain
function were described in the recent review article [9].
Notably, 13C NMR studies recently showed the signifi-
cance of glutamate release and recycling between neurons
and glia. The neurotransmitter pool, which previously was
considered to be small and metabolically inactive,
appeared to be included in glutamine-glutamate recy-
cling, the major neuronal metabolic pathway. The activity
associated with glutamate neurotransmission was found
to be linearly dependent upon glucose oxidation, and this
supports the molecular model of stoichiometric coupling
between glutamate neurotransmission and functional
glucose oxidation. Thus, the considered here models of
central glucose metabolism are clearly of great interest to
the field of neuroscience.

Since 13C is known to be harmless, it has been used in
human subjects [10], particularly for mapping the spatial
localization of metabolites using NMR spectroscopic
imaging [3,11]. This method, designed for clinical use,
has been applied as a diagnostic tool in pediatric and
adult brain disorders [12,13]. A non-invasive 13C mag-
netic resonance spectroscopy technique allowed the syn-
thesis rate of N-acetyl-1-aspartate to be determined in
patients with Canavan disease [14,15]. It is also widely
used in neuroscience to study brain metabolism in ani-
mals [16,17]. Bixel et al [18] revealed an interesting appli-
cation of this method by using it to define all products of
leucine metabolism in cultured astroglial cells.

While most of the results described above were obtained
by the qualitative comparison of NMR measurements,
their quantitative analysis would offer much more pro-
found insights into cell processes. A tool able to estimate
metabolic fluxes would reveal the dynamic characteristics
of cellular phenotype under specific conditions, thus
complementing genomic and proteomic methods, which
only reveal static characteristics of the cell. The specific
tools for quantitative metabolic flux profile analysis from
measured isotopomer distribution data are described
next.

Current status of isotopomer distribution 
analysis
Very approximate estimation of metabolic fluxes could be
provided by implementation even formulas derived using
simplifications such as an assumption that the fluxes are
unidirectional [19-22]. Such formulas were applied to the
analysis of enrichment in specific carbon position or mass

isotopomers. Although such analysis is easy to perform, it
is incomplete, and as we have found (unpublished data),
the simplifications could lead to unreliable estimates.
More reliable tools that supplement data acquisition nor-
mally include the following: (i) a mathematical model,
which simulates the distribution of isotopomers, (ii) algo-
rithms used to fit respective experimental pattern and thus
evaluate the matching flux profile, and (iii) statistical
analysis of the best fit parameters.

Different levels of complexity could be implemented in
mathematical models for the isotopomer distribution
analysis. Katz and Wood [23] were the first who estimated
the metabolic fluxes by solving the mass balance equa-
tions for the positional enrichment of metabolites. How-
ever, this approach was only appropriate for a small
number of fluxes that, in addition, were unidirectional.
Consideration of real bidirectional fluxes increased a
number of unknown parameters rendering the systems of
equations underdetermined. This disadvantage
demanded more advanced analytical applications, which
would be able to analyze more experimental data in order
to unambiguously determine the parameters. Mason and
Rothman [24] described the basic principles of simple
model construction for the analysis of some selected posi-
tional enrichment together with executing a "classical"
kinetic model that evaluated the time course of metabo-
lite concentrations using the available kinetic informa-
tion. The idea to complement kinetic models with
isotopomer distribution data and, in the same time, to
link isotopomer analysis with kinetic data increased the
reliability and informative outcome of both approaches.
However, the described method for isotopomer analysis
cannot account for all the information provided by NMR
experiments. For any given molecule containing n carbon
atoms, it only filters a maximum of n enrichments at
selected carbon positions, while the total number of all
isotopomers is 2n and all of them could be important for
the estimation of the metabolic flux profile. Thus a part of
information contained in the NMR data is not used for the
analysis. In fact, the NMR measurements, as it is men-
tioned in the introduction, could provide the relative con-
centrations of individual isotopomers or at least the sum
of those that contain a specific label pattern.

The comprehensive analysis of mass isotopomer data
obtained by MS also demands that all possible individual
isotopomers are computed, because every mass iso-
topomer is the sum of several individual isotopomer con-
centrations and each component of the sum could be
produced in the different way.

According to the total number of isotopomers, the calcu-
lation of their fractions requires solving 2n equations for
the substance consisted of n carbons. In this way even for
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the model description of all isotopomers formation in
glycolysis and PPP the algorithm must construct (it is
practically impossible to write such a huge number of
equations by hand) and solve several hundred equations.

Schmidt et al. [25] developed a simulation algorithm for
the computation of all possible isotopomers. This algo-
rithm of isotopomer mapping matrices, evolved from the
earlier approach of atom mapping matrices [2,26],
allowed to construct and solve automatically hundreds of
equations that describe all isotopomers transformation
according to the specific reaction mechanisms. The itera-
tive procedure, which was used for the solution, in fact
provided the evaluation of time course for the relaxation
of each isotopomer fraction to steady state. This method
made it possible to simulate all isotopomers distribution
for the given set of metabolic fluxes, while the best fit to
the experimental distribution pointed to the set compati-
ble with the measured distribution. However, the pres-
ence of large exchange fluxes caused severe instability of
numerical solution or convergence problems [27], which
restricted the application of this method.

Wiechert et al [27] found an elegant way to overcome the
problem of instability by reformulating isotopomer bal-
ance equations into cumomer balance equations. The
term cumomer (from cumulative isotopomers) designates
a sum of isotopomers with fixed positions of label (a 1-
cumomer fraction is a sum of the positional enrich-
ments). Such reformulation of the equations in terms of
cumomers simplified the task and made it possible to
obtain the solution in one step based on matrix calculus.
The equations formulated in terms of cumomer fractions
can be solved explicitly as a cascade of linear systems, eval-
uating the cumomer fractions one by one starting from
the 0-cumomer fraction. Then the cumomer fractions can
be transformed back into isotopomer fractions.

This method was well elaborated and all the history of its
development from analysis of positional enrichment
experiments was well documented [27-30]. A computer
program based on the cumomer-balance method per-
forms the complete isotopomer analysis and finds the flux
profile by experimental isotopomer distribution fitting
[27]. It is easy to work with this program; user just needs
to write in symbolic form the reactions designed for anal-
ysis marking the respective re-formations of carbon skele-
ton. Using this input, the program automatically
constructs isotopomer balances, transforms to cumomer
analysis, solves the equations, and displays the results in
the desired form. Creation of such a tool seemed to solve
eventually the problems of isotopomer analysis.

However, there are at least three reasons to develop one
more approach to isotopomer analysis. First, although the

above described algorithm overcomes the problem of
instability of iterative numerical solution, it is completely
restricted by stationary flux analysis thus leaving without
any examination the available time course of label distri-
bution. In fact, the stability of solution could be control-
led without losing the advantage of testing the time course
of isotopomer accumulation, which could be more
informative than steady state analysis.

Second, all the above approaches to the computation of
isotopomer transformations consider fluxes as independ-
ent variables. This was noted as an advantage of the
method because such an analysis did not need any
assumptions regarding the biochemical basics of consid-
ered fluxes [27]. However, this could be an advantage only
if the experimental pattern of label distribution is suffi-
cient for evaluation of a unique true set of fluxes. If the
amount of information is insufficient, additional data are
necessary for the unambiguous evaluation of flux profile.
In this case the known kinetic characteristics of analyzed
enzyme reactions and results of classical kinetic modeling
could provide such additional necessary information.

Third, even if the analysis reveals the fluxes taking them as
independent, the fluxes remain disconnected from the
detailed mechanisms of the catalysis and regulation con-
sidered in kinetics models, thus the biochemical reasons
for the observed behavior remain unclear. In this case, the
use of kinetic modeling could also solve this problem.
Long era of classical biochemistry developed a number of
kinetic models of complex systems that use known char-
acteristics of enzyme catalysis and regulation. These
parameters could be employed in metabolic flux analysis,
providing the necessary additional information. An excel-
lent example is a model of erythrocyte central metabolism
[31], which includes kinetic models of all involved
enzymes with known regulatory and catalytic mecha-
nisms and kinetic constants, verified by numerous experi-
ments.

On the other hand, the kinetic models of complex sys-
tems, analyzing the experimentally observed cellular func-
tions as a result of operation of many regulated processes,
include many parameters and therefore, like the flux anal-
ysis, also suffer from insufficiency of experimental data.
Moreover, the kinetic models normally include character-
istics of enzymatic reactions obtained in vitro, and such
data cannot always be used for the interpretation of in vivo
experiments. The use of in vivo tracer data would animate
the old classical district of kinetic studies.

In this situation integration of kinetic modeling with
complete isotopomer analysis would provide:
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- for kinetic study of in vivo cell operation the new area of
tracer data, which are necessary for understanding the
organization and regulation of the processes in living cells
and applicability of classical in vitro information;

- for metabolic flux analysis the additional information to
restrict the number of acceptable sets of metabolic fluxes
by the ones that are compatible not only with a given pat-
tern of isotopomer distribution, but also with the data of
previous biochemical studies.

The way of such integration is described next.

Algorithms for integrated kinetic and metabolic 
flux analysis
As MFA is a commonly accepted acronym for metabolic
flux analysis based on isotopomer data, the tool proposed
by Selivanov et al [32,33] designed for integrated kinetic
and metabolic flux analysis is abbreviated here as IKMFA.

IKMFA was designed to possess the following characteris-
tics:

1. To be compatible with any kinetic model of central
metabolism, so that the MFA part accepts the total fluxes
and metabolite concentrations predetermined by the
kinetic model constituting the first part of the analytic
software.

2. To use the total fluxes and metabolite concentrations,
obtained from the kinetic model, for estimation of the
time courses and distribution of all possible isotopomers.

3. To use fitting of the experimental time course, or/and
steady state isotopomer distribution or/and global metab-
olite concentrations for the estimation of both fluxes and
parameters of the kinetic model used.

These characteristics render IKMFA able to implement the
detailed tissue-specific kinetic mechanisms of the enzyme
reactions to describe the fluxes. In other words this
approach builds a complete isotopomer analysis on the
top of a kinetic model. Used for the analysis of iso-
topomer distribution data, the kinetic mechanisms, vali-
dated by all available kinetic models, could be examined
for the in vivo conditions. This links the estimated meta-
bolic fluxes with molecular and kinetic mechanisms of the
metabolic pathways, i.e. with their biochemical basis.
There are no limits in respect to the expressions for reac-
tion rates, catalysis could be described according to the
kinetic mechanism of any levels of complexity as it is
accepted in kinetic modeling. An application of IKMFA for
analysis of complex metabolic system that connects
kinetic models of central metabolism with MFA has been

considered elsewhere [33]. This metabolic system is sche-
matically represented in the Figure 2.

As indicated above, the first step of analysis is the solution
of ordinary differential equations (ODEs), which describe
the total concentration change as the sum of the produc-
tion rate of the given metabolite minus the rates of its con-
sumption.

In principle any ODE solver could serve in the kinetic part
of the analysis. Since the software was written in program-
ming language "C++", a compatible ODE solver was cho-
sen. The existed source "C++" libraries, such as
"Numerical recipes in C++", http://www.nr.com/ or the
C++ class library 'ODE++' of Milde (2003), http://
www.minet.uni-jena.de/www/fakultaet/iam/ode++/
ode++_e.html were appropriate solvers. The metabolite
concentration obtained from the ODEs solution become
initial values of non-labeled isotopomers of internal
metabolites in the following step of analysis. Other iso-
topomers are initially set to 0, except the outside metabo-
lites, which have the initial distribution according to that
added experimentally. Fluxes, also obtained from the
solution of ODEs, are used in the second part to simulate
the respective reactions between the isotopomers (Figure
2).

In spite of evident similarity between the first step of
IKMFA and ordinary kinetic model execution, there is an
essential difference between them. Kinetic models nor-
mally relate one enzyme reaction to the net flux as the dif-
ference between the forward and reverse fluxes, because
only net fluxes define changes in the calculated total
metabolite concentrations. In contrast, the first step of
IKMFA needs to compute the forward and reverse fluxes
separately and also some additional fluxes, which also
serve as an input for the subsequent MFA. Definitions of
such additional fluxes and a way to compute them are
described next.

Definitions and algorithm for evaluation of all 
isotope-exchange fluxes
A classical example of a variety of fluxes is the non-oxida-
tive PPP, the most problematic metabolic part related to
numerous isotope-exchange reactions catalysed by TK and
TA [34,35]. TK, thiamine diphosphate (ThDP)-dependent
enzyme, catalyzes cleavage of a carbon-carbon bond and
reversibly transfers a two-carbon fragment (glycolalde-
hyde) from a ketose-phosphate donor to an aldose- phos-
phate acceptor, forming new ketose- and aldose-
phosphates. TA catalysis operates via another mechanism
involving a Schiff base formed directly between the
enzyme and the substrate, and, as a result, a three-carbon
fragment (dihydroxyacetone) is transferred from a ketose-
phosphate donor to an aldose-phosphate acceptor. How-
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ever, a similar scheme could represent the steps of TA
catalysis and TK catalysis is therefore considered here as
representative of both enzymes. Although only two TK
reactions are widely accepted to take place in PPP,

r5p + x5p <-> s7p + g3p  (1)

e4p + x5p <-> f6p + g3p,  (2)

this enzyme catalyzes in fact much more isotope-exchange
reactions [34,35]. Using as an example the first of two
above reactions (also shown in Figure 1), Figure 3 illus-

trates all possible isotope exchange fluxes related with this
TK reaction.

The reversible steps associated with the ping-pong mech-
anism of TK reaction involve exchange (i) between the
ketose substrate and product of its cleavage, or, in the
present example, between xylulose-5-phosphate (xu5p)
and glyceraldehyde-3-phosphate (g3p) shown in Figure
3A and also between sedoheptulose-7-phosphate (s7p)
and ribose-5-phosphate (r5p) shown in Figure 3B, and
(ii) between two ketoses (xu5p and s7p, Figure 3C). Thus,
six isotope exchange fluxes are associated with one TK

Scheme of the metabolic reactions simulated in the model comprising glycolysis and gluconeogenesis, PPP, TCA cycle and ana-plerotic reactionsFigure 2
Scheme of the metabolic reactions simulated in the model comprising glycolysis and gluconeogenesis, PPP, TCA cycle and ana-
plerotic reactions. The nodes represent metabolites, and solid lines are reactions. Reaction 1 and 0 describe glucose exchange 
with the medium; reaction 2 is the oxidative branch of PPC (g6p → (r5p<->r15p<->x5p)); 3–11 belong to glycolytic or gluco-
neogenesis pathways (PFK, aldolase, Fl, 6Pase, g3p conversion through GPDH reaction); 12 is fructose input, 13 is pyruvate 
decarboxylation, 14–15 are simplified representation of the TCA cycle, 16–17 are anaplerotic reactions, 18–25 are the in- and 
out-fluxes connecting the considered part with the rest of metabolic network, 26–34 and 35–38 are respectively transketolase 
and transaldolase isotope exchange fluxes described in the text. Thick edges indicate fast equilibrium between the connected 
nodes, catalyzed by EP and RPI, PGI, TPI.
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Various isotope exchange fluxes created in the TK-catalyzed reaction: xu5p + r5p <-> g3p + s7pFigure 3
Various isotope exchange fluxes created in the TK-catalyzed reaction: xu5p + r5p <-> g3p + s7p. Designations are the same as 
in Figure 1. A. Isotope exchange between xu5p and g3p in the presence of labeled g3p results in labeling of xu5p. This exchange 
flux could be calculated as follows. Forward flux of the last n-2 atoms of ketose-substrate to the pool of aldose-product (e.g., 
x5p → g3p) implies delivering the x5p atoms through the three steps (x5p + E → E*x5p → EG*g3p → EG + g3p). The inter-
mediates E*x5p and EG*g3p contain aldose fragments originated from two sources, either x5p or g3p, and the respective frac-
tions of isotopomers are specified by the relative values of the elementary rates. Specifically, the rate of delivery of x5p atoms 
into g3p is a part of the rate v3 (vi is a unitary rate corresponding to the rate constant ki); it is proportional to the content of 
carbon atoms originated from x5p in EG*g3p. The proportionality constant or fraction of x5p atoms in EG*g3p (Px1

EGg, where 
the superscript x1 denotes the last carbons originated from x5p, and the subscript EGg denotes the form EG*g3p) depends on 
the fraction of former x5p atoms in E*x5p, that partly consists also of former g3p atoms that enter via the reactions whose 
rates are v-2 and v-3; thus it is expressed as a ratio of the input of the donor atoms from E*x5p (whose fraction is Px1

Ex) to the 
total input to EGa1:
Px1

EGg = (v2Px1 
Ex)/(v2 + v-3).  (f1)

The proportion of atoms in E*x5p that originated from x5p (px1
Ex) in turn is given by the ratio of influx of this kind of atom to 

the total influx into the compound Ec1 at steady state:
Px1 

Ex = (v1 + v-2Px1
EGg)/(v1 + v-2).  (f2)

Solving Eqs fl and f2 yields the expression:
Px1

EGg = (v1 v2)/(v-2 v-3 + v-3 v1 + v1 v2).  (f3)
The flux of former x5p atoms into g3p, vxg, where the subscript xg denotes the x5p->g3p direction, is given by
vxg = v3 Px1

EGg = (v3 v1 v2)/(v-2 v-3 + v-3 v1 + v1 v2).  (f4)
Equation f4 gives the rate of forward delivery of the last n-2 atoms in x5p to g3p, expressed by using the unitary rates. Since 
these atoms can originate only from either x5p or g3p, the fraction of atoms originating from g3p is expressed as Pg

Ex = 1 - 
px1

Ex. and the reverse flux of the aldose (g3p) to the ketose pool (x5p) can be described similarly to Eq. f4 as
vgx = v-1 Pg

Ex,  (f5)
B. Isotope exchange between s7p and r5p in the presence of labeled s7p results in labeling the r5p. The exchange of atoms 
between s7p and r5p can be described in the same way as it is done in A.
C. Isotope exchange between s7p and x5p in the presence of labeled s7p results in labeling of x5p. Forward flux (vxs) of the 
first two atoms of x5p to a second ketose/donor, s7p, implies delivery of the atoms through six steps (x5p → E*x5p → EG*g3p 
→ EG → EG*r5p → E*s7p → s7p). This is a part of the rate of s7p production (v6) and it is proportional to the fraction of 
former x5p carbon atoms in E*s7p, namely Pxf

Es, where the superscript xf denotes that the first part of the molecule originates 
from x5p. This proportion is determined similarly to that described above, i.e. by solving the five equations for the fractions of 
atoms that originated from x5p in all the species (similar to the Eqns fl and f2). The reverse flux (vsx) of the first two atoms of 
s7p to x5p could be described in the same way.
Thus the following fluxes of the carbon skeleton parts are expressed through the same elementary steps of the catalytic mech-
anism:
vxg: x5p -> g3p
vgx: g3p -> x5p
vxs: x5p -> s7p
vsx: s7p -> x5p
vsr: s7p -> r5p
vrs: r5p -> s7p
The difference between forward and reverse fluxes of isotope exchange between all pairs of pools is the same and corre-
sponds to the net flux:
vxg - vgx = vxs - vsx = vrs - vsr = vnet  (f6)
It follows from (f6)
vxg - vxs = vgx - vsx, and vsr - vsx = vrs - vxs  (f7)
The whole reaction related to exchange between x5p and s7p expressed by the fuxes vxs and vsx is accompanied by the 
exchange inside half-reactions, i.e. between x5p and g3p, and also between s7p and r5p. These exchanges in fact constitute a 
part of the fluxes vxg and vsr deduced above and the differences (f7) describe the "pure" exchange between ketose and the prod-
uct of its splitting, which is the same in both directions. Taking into account equality of the "pure" exchanges expressed by 
equations (f7), the four fluxes define all of the isotope exchanges associated with the considered TK reaction:
- forward flux x5p->s7p (vxs)
- reverse flux s7p->x5p (vsx)
- pure exchange x5p<->g3p (vxg - vxs)
- pure exchange s7p<->r5p (vsr - vsx)
The above fluxes could be expressed through the elementary rates, as exemplified by Equation f4. The elementary rates, in 
turn, could be expressed through the elementary rate constants and substrate and product concentrations using, for instance, 
King and Altman algorithm (as described e.g. in [48]). Thus, all TK fluxes are considered not as independent but as interrelated 
through the elementary rate constants, which could be determined in independent experiments as described elsewhere [33].
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reaction. As shown previously [32] all of them are essen-
tial for distribution of the label and should be taken into
account for correct estimation of metabolic fluxes. These
fluxes could be expressed through the rate constants of
elementary steps as the legend to Figure 3 describes in
details.

In fact, forward and reverse transfer of the first two car-
bons between the x5p and s7p are coupled with transfer
of the three last carbons of x5p to g3p pool and back, and
also the five last carbons of s7p to r5p pool and back.
Therefore, transfer between ketose and product of its
cleavage could be presented as consisted of two parts, one

Scheme of all the TK reactions accounting for competition between themFigure 4
Scheme of all the TK reactions accounting for competition between them. Designations are the same as in Figure 1. The reac-
tions start with reversible binding of the free enzyme to ketose (with the elementary rate constants k1, k-1, k7, k-7, k6, k-6) and 
formation of the covalent enzyme-substrate complex followed by its splitting (k2, k-2, k8, k-8, k5, k-5) and formation of the cova-
lently bound intermediate G ('active glycolaldehyde') and aldose, both localized in the active site of the enzyme. The split com-
plex dissociates (k3, k-3, k9, k-9, k4, k-4) into the enzyme bound with active glycolaldehyde (EG) and the free molecule of aldose. 
Nine different isotope exchange fluxes are associated with these reactions, as explored in more detail in Figure 3.

xu5p + E → Exu5p → EGg3p  EG  EGrSp → Es7p → E + s7p

xu5p + E ← Exu5p ← EGg3p  EG  EGrSp ← ES ← E + s7p

xu5p + E → Exu5p → EGg3p  EG  EGe4p → Ef6p → E + f6p

xu5p + E ← Exu5p ← EGg3p  EG  EGe4p ← Ef6p ← E + f6p

s7p + E → Es7p → EGr5p  EG  EGe4p → Ef6p → E + f6p

s7p + E ← Es7p ← EGr5p  EG  EGe4p ← Ef6p ← E + f6p
xu5p+E↔Exu5p↔EGg3p↔EG+g3p
f6p+E↔Ef6p↔EGe4p↔EG+e4p
s7p+E↔Es7p↔EGrSp↔EG+r5p

k2

k1

k-1

k3

k4

k-6

k-5

k-4

k-3

k-2

k6

k5

xu5p

f6p

E*xu5p

E*f6p

EG*g3p

EG*e4p

g3p

e4p

r5p

EG*r5p

s7p

E*s7p

E EGE

k8 k9k7

k-7
k-9k-8

EG

EG

EG

E

E

−⎯ →⎯⎯g p3 +r5p⎯ →⎯⎯
+← ⎯⎯⎯g p3 −← ⎯⎯⎯r p5

−⎯ →⎯⎯g p3 +⎯ →⎯⎯e p4

+← ⎯⎯⎯g p3 −← ⎯⎯⎯e p4

−⎯ →⎯⎯r p5 +⎯ →⎯⎯e p4

+← ⎯⎯⎯r p5 −← ⎯⎯⎯e p4
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of which is coupled with transfer between two ketoses and
some another, additional part. The legend to Figure 3
explains in details that these additional parts are equal in
forward and reverse directions. Taking this into account,
one should compute (in the way shown in the legend to
Figure 3) four different isotope transfers related with just
one TK reaction (1):

- xu5p->s7p accompanied by the transfer xu5p->g3p and
r5p->s7p

- s7p->xu5p accompanied by the transfer s7p->r5p and
g3p->xu5p

- additional transfer xu5p<->g3p the same in both direc-
tions

- additional transfer s7p<->r5p the same in both direc-
tions.

Presence of different substrates in the intracellular volume
further complicates the situation. Figure 4 shows three
reactions catalyzed by TK in vivo, which compete for the
same enzyme. In this situation the number of isotope
exchange fluxes related to the TK reactions increases, but
all of them can be expressed through the elementary rate
constants in the way similar to that indicated in the Figure
3 legend. The following isotope-exchange fluxes related to
the TK reactions shown in the Figure 4 should be
accounted for subsequent analysis in the way similar to
that described in the legend of Figure 3 for one separated
reaction:

- xu5p->s7p accompanied by the transfer xu5p->g3p and
r5p->s7p;

- s7p->xu5p accompanied by the transfer s7p->r5p and
g3p->xu5p;

- xu5p->f6p accompanied by the transfer xu5p->g3p and
e4p->f6p;

- f6p->xu5p accompanied by the transfer f6p -> e4p and
g3p -> xu5p;

- s7p->f6p accompanied by the transfer s7p->r5p and e4p-
>f6p;

- f6p->s7p accompanied by the transfer f6p->e4p and r5p-
>s7p;

- additional transfer xu5p<->g3p the same in both direc-
tions;

- additional transfer s7p<->r5p the same in both direc-
tions;

- additional transfer e4p<->f6p the same in both direc-
tions;

Expressed through the elementary rate constants such iso-
tope exchange fluxes are evaluated for all the enzymes in
the course of executing the kinetic model. The obtained
values are used in the second step of analysis, namely in
simulation of isotopomer distribution, which is done in
the way similar to that accepted in MFA (e.g. in [27]). The
respective algorithm is described next.

Reactions between isotopomers
To interpret the result of isotope redistribution in metab-
olites of a metabolic pathway all the possible reactions
between isotopomers are simulated at this step of analy-
sis. An algorithm of simulation of isotopomer distribu-
tion, which is present below, is in principle similar to that
described elsewhere [25], though it is implemented by
different means. In contrast to the earlier algorithms [25],
here the total fluxes are taken from the previous step of
analysis, where they are expressed as functions of total
concentrations of metabolites and effectors according to
the reaction mechanisms. Moreover, the program calcu-
lates the real concentrations and time courses of iso-
topomers and then defines fractions corresponding to the
analyzed experimental data.

For isotopomer designation we use a binary notation for
the 13C and 12C atoms as it is helpful in optimization of
references to a specific isotopomer. Since each carbon
atom of a molecule can exist in one of the two states:
labeled (marked as '1') or unlabeled ('0'), each metabolite
in the model can be represented by an array of 2n of pos-
sible isotopomers, where n is the number of carbon atoms
in the molecule. Each isotopomer in the model is repre-
sented as binary numbers; its digits correspond to the car-
bon atoms in a molecule (3 digits for trioses, 4 for
erythrose, etc.). A '1' or a '0' in certain position in a string
signifies that corresponding carbon atom is labeled or
unlabeled. For instance, all isotopomers for glyceralde-
hyde-3-phosphate (g3p) are:

000, 001, 010, 01l, 100, 101, 110, 111

This representation of isotopomers as successive integer
numbers is very convenient because the model uses it as
references to the respective position in the existing array of
concentrations of all isotopomers, different for each
metabolite. This ordering of the isotopomers in the array
allows optimization of referring the isotopomer products
for any isotopomer substrate related to the considered
reactions, as it is explained below. For instance, the reac-
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tion (xu5p + r5p ↔ s7p + g3p) between arbitrarily chosen
isotopomers of x5p (10011) and r5p (10000) produces
the following isotopomers of s7p and g3p:

10011(xu5p) + 10000(r5p) ↔ 1010000(s7p) + 011(g3p)
 (3)

This reaction could be easily simulated by manipulations
with binary numbers, viz., the product of scission of the
ketose substrate of n carbons will be a product of bitwise
AND of the respective binary number with 2n-2-1, in the
above example (10011 AND 111) = 011. To define the ref-
erence number of the produced new ketose, the reference
number of initial ketose should be shifted n-2 positions
right, and then (if m is number of carbons in the aldose
substrate) m positions left. The bitwise OR operation per-
formed for the obtained number and reference number of
aldose substrate produces the resulted ketose isotopomer.
In the above example, right shift of 10011 gives 10, its left
shift gives 1000000 and (1000000 OR 10000) gives
1010000. These operations are fast and allow the refer-
ence number of isotopomer products to be defined for
each pair of isotopomer-substrates.

Determination of the reference numbers of products for
each pair of substrates is the basis of the optimization.
Then the change of concentrations according to the suc-
cession of reaction is calculated. Assuming that all iso-
topomers have the equal affinity, the rate of reaction
between pair of isotopomers is proportional to their con-
centrations, while the sum of reaction rates for all iso-
topomers gives the global metabolic flux calculated also at
the previous, kinetic, step. If, for instance, Vf is the global
forward flux for the TK reaction between X5P and R5P, the
flux for this reaction between isotopomers i and j (V3fij)
would be expressed as follows:

Vfij = Vf × [X5Pi] × [R5Pj]/([X5Ptot] × [R5Ptot])  (4)

Here, the indices i and j refer to the concentrations of the
respective isotopomers and the index 'tot' refers to the
total concentration of the metabolite, as calculated in the
kinetic model. In this way, the first part, ODE solving, is
linked to the second part that computes the label distribu-
tion: the kinetic model calculates global fluxes and con-
centrations and defines the values (as in the above
example V3f/([X5Ptot] x [R5Ptot])), which are used to get
the fluxes in reactions between isotopomers (as in Equa-
tion (4)). During the small time interval dt the TK reaction
(3) considered as an example consumes the amount dt ×
V3fij of each of the isotopomers i and j and this value is
subtracted from the concentrations of respective iso-
topomers.

[X5Pi]t+dt = [X5Pi]t - dt × Vfij

[R5Pj]t+dt = [R5Pj]t - dt × Vfij  (5)

Here, the indices t and t + dt indicate the time of the sim-
ulated process. As usual for numerical solution of differ-
ential equations, this could be acceptable approximation
if the time step dt is so small that consumption during one
step is small compared to the amount of these isotopom-
ers; practically, the value for dt is taken so that its further
decrease does not affect the solution. The program adds
the same amount to the concentrations of reaction prod-
ucts, which numbers (ra and rd) are defined from i and j
as described above.

[GAPra]t+dt = [GAPra]t + dt × Vfij

[S7Prd]t+dt = [S7Prd]t + dt × Vfij  (6)

The above algorithm is present in order to illustrate the
main principles of TK reaction simulation between a pair
of isotopomers according to the Equations 5 and 6. How-
ever this algorithm is not optimized in the best way. To
simulate the reaction between n isotopomers of ketose
and m isotopomers of aldose it is necessary to perform n
× m cycles of such calculations. It could be optimized by
the imaginary separation of the whole reaction into two
steps corresponding to the aldose and ketose products for-
mation. First scission of all ketose isotopomers could be
simulated, producing respective isotopomers of aldose
product according to the scheme x5p->g3p; this demands
just n recalculations of x5p and g3p concentrations. Then
the rest two-carbon fragment (for TK) with only 4 differ-
ent possible combinations of label interacts with iso-
topomers of aldose substrate (C2+r5p->s7p). This
demands 4 × m recalculations of r5p and s7p for one
direction of the reaction. In this way the whole descrip-
tion of the TK reaction needs only 2×(n+4×m) recalcula-
tions of substrate-product pairs instead of n × m
recalculations of four substances according to the above
algorithm.

Analysis of experimental data starts from execution of the
kinetic model simulating time course of metabolite con-
centrations and fluxes, which then are used in the second
step of simulation of corresponding labeled isotopomer
distribution. Experimental data fitting finds the flux pro-
file and kinetic parameters compatible with the analyzed
data. This is described next.

Fitting algorithm
A combination of kinetic modeling with isotopomer dis-
tribution analysis allows combining also the respective
experimental data, which can be analysed. Moreover,
IKMFA expands the usual steady state isotopomer analysis
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to the non-steady state conditions. The following kinds of
experimental data could be subjects of fitting:

- Measured rate of production of various metabolites in
cell cultures under different conditions of incubation and
intracellular concentration of some metabolites;

- Total metabolite concentrations;

- Distribution of labeled atoms such as 13C isotopes in
metabolites (13C isotopomers), when the label was added
with some of the substrates.

Optimization of a merit function in a multidimensional
space of parameters is well elaborated and usually does
not represent a problem [36,37]. However, in our particu-
lar case, two kinds of computational problems arise. First,
if the merit function (χ2, the sum of the squares of the ver-
tical distances of the experimental points from the calcu-
lated curve divided by the standard deviation) is defined
from the numerical solution of differential equations,
abrupt change of parameters demanded by the applied fit-
ting algorithm could render the system stiff and induce
failure of ODE solver. Second, if the total metabolite con-
centrations are not measured, the merit function does not
account for them, so that the best fit sometimes corre-
sponds to evidently unreal concentrations.

The first problem was partly solved by our approach of
two-step solution, when the isotopomer analysis comes
after the differential equations that describe changes in
total metabolite concentrations are solved. In the first step
a small number of equations for total concentrations are
to be solved and at this step the solution is usually robust.
A number of numerical methods for ODE solution are
implemented, in particular the Bulirsch-Stoer method
[37] could be recommended. If the problem of stiffness
nevertheless arises it could be solved using implicit or
semi-implicit methods e.g. using the Bader and Deuflhard
discretization of Bulirsch-Stoer method [37]. The problem
of stiffness often arises in the second step when much
more equations for isotopomers have to be solved. The
methods for stiff ODEs will be implemented for the solu-
tion of the huge systems for isotopomers, however, even
the use of the steady state metabolite concentrations,
known from overall the solution, as initial values for unla-
beled isotopomers improves the robustness of the solu-
tion.

Another part of the stiffness problem in fact was solved
when, to address the second problem (of unreal best-fit
concentrations), we introduced the threshold for χ2

change, dependent on metabolite concentrations. Accord-
ing to the used Powel's algorithm for the local decrease of
χ2 value, the program changed parameters one by one

until the minimum was reached in each direction. To
avoid long descent in almost flat valley, if a change in χ2

was lower than threshold, the program switched to
another direction in the space of parameters. If some
metabolite concentration has reached its critical value, the
program automatically increased the threshold for χ2

change if the parameter change increased the critical con-
centration, but decreased the threshold to 0 if the param-
eter change induced also a decrease of critical
concentration. These rules let to control the range of con-
centrations, and made the solution of ODEs more stable.
After termination of descent in the space of parameters,
the program make a step uphill by random change of a
parameter as is supposed by Simulated Annealing algo-
rithm, and then repeats the downhill descent. All the suc-
cessful steps of parameter change are saved, so that if the
program comes into the area of stiffness and the solver
fails, the procedure could be started again from the last
successful step after the necessary correction.

After the program finds the minimum of χ2 and completes
the fitting procedure, it can determine the set of parame-
ters most relevant to the fit using singular value decompo-
sition of the second derivative matrix of χ2 with respect the
parameters (Hessian matrix). Square roots of the diagonal
elements of the inverse of Hessian matrix provide the
standard deviation for the essential parameters. The
present in our website instruction describes the way of
using this feature of the program.

Thus, fitting algorithm accepts different kinds of data and
estimates not only compatible set of metabolic fluxes but
also parameters of enzyme reactions and their regulation,
providing insight to the biochemical underground of the
particular set of metabolic fluxes.

Prime results and perspective
The advantages of implementation of comprehensive
enzyme kinetic mechanisms (e.g. as explored in the Figure
3 and shown in Figure 4) in metabolic flux analysis were
examined in [33], where the two levels of profundity in
flux analysis were compared. When the fluxes created in
TK reaction were considered as independent variables, as
was commonly accepted currently in metabolic flux anal-
ysis, they were compatible with the experimental r5p and
lactate label distribution in cancer cell line HT29. How-
ever, the set of isotope-exchange fluxes obtained in this
way was not unique and was found to be incompatible
with the TK reaction mechanism. The implementation of
dependency between all TK fluxes through the unitary
rates, as was accepted in classical enzyme kinetic analysis,
restricted the area of possible estimates thus making the
analysis more reliable.
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On the other hand, such integrated analysis brought a
new area of isotopomer distribution data to the kinetic
study of enzyme operation in vivo. Fitting isotopomer dis-
tribution directly accessing the kinetic constants provided
insight to the enzyme kinetic mechanisms that operate in
vivo. Some of the kinetic constants obtained from in vitro
study were corrected based on the analysis of in vivo iso-
topomer distribution. The ability to accumulate the infor-
mation from different sources and to check its
compatibility makes this approach scalable into analytical
tool which filters and orders available data, as well as eval-
uates metabolic fluxes compatible with maximum of
available information.

The analysis of tracer data considered here focuses mainly
on central metabolic pathways that, according to the
recent review [9], are stoichiometrically coupled with
glutamate neurotransmission. In this view a major limita-
tion in the interpretation of tracer data is the poor defini-
tion of relationship between neuronal activity and
neuroenergetic processes supported by glucose metabo-
lism [38-40]. The term neuronal activity applies to a spec-
trum of energy requiring processes including action
potential propagation, neurotransmitter release and
uptake, vesicular recycling, and maintenance of mem-
brane potentials [41]. All of these processes are involved
in short-term neuronal information encoding and the rel-
ative distribution of energy among them remains to be
determined. The contribution of the different classes of
neurons in a cortical region to the overall energy con-
sumption remains also unclear. To address these ques-
tions the flux analysis based on tracer data should be
coupled with the comprehensive models of central metab-
olism interactions with neuronal activity; this assumes
further development of IKMFA towards higher complexity
of the kinetic model underlying the flux analysis. Such a
model could include different cellular compartments or
even consist of partial differential equations describing
the diffusion of components in intracellular volume. The
requirement for multi-compartment analysis of label dis-
tribution data follows, in part, from a series of experi-
ments where even qualitative analysis of metabolite
labeling pointed out to the existence of different pools of
pyruvate in neurons and astrocytes [42-44]. The existence
of non-mixed pools of soluble substance in cytosole cur-
rently seems surprising. Using a multi-compartment
model coupled with isotopomer analysis for the analysis
of such data would allow other possible hypotheses to be
excluded and would provide quantitative information
regarding the relationship between the pools.

Although the data on the existence of different intracellu-
lar compartments not separated by membrane structures
are not widely accepted, they appear in various areas of
cell biology and deserve thorough analysis. Analysis of the

behavior of ATP-sensitive K+ channel, located in sarco-
lemma revealed large differences in ATP levels at different
distance from the sarcolemma [45,46]. Similarly high dif-
fusion limitations in the membrane vicinity were found
for cAMP, as follows from the study of cAMP gated chan-
nels [47]. Understanding real cellular processes requires
integrated analysis of various data relating to the real
multi-compartment intracellular space with restricted dif-
fusion limitation for metabolites. The approach described
here has an ability to develop into a tool that can be used
in such an integrative analysis. An understanding of regu-
latory mechanisms as an addition to the reliable estima-
tions of metabolic fluxes will increase outcome of stable
isotope tracer analysis, which is already in clinical use.

Abbreviations
cit, citrate; dhap, dihydroxyacetone phosphate; e4p, eryth-
rose-4-phosphate; g6p, glucose-6-phosphate; g3p, glycer-
aldehyde-3-phosphate; f6p, fructose-6-phosphate; glu,
glutamate; lac, lactate; oaa, oxaloacetate; pep, phosphoe-
nolpyruvate; PPP, pentose phosphate pathway; pyr, pyru-
vate; r5p, ribose-5-phosphate; s7p, sedoheptulose-7-
phosphate; TA, transaldolase; TK, transketolase; xu5p,
xylulose-5-phosphate; NMR, nuclear magnetic resonance;
MS, mass spectrometry; MFA, metabolic flux analysis.

Acknowledgements
This work was supported by the grants: Fundation la Caixa (ONO3-70-0), 
the Ministerio de Ciencia y Tecnologia of Spanish Government (SAF2005-
01627 and PPQ2003-06602-C04-04); NIH DK56090-Al (to W.N.P.L); Gen-
eralitat de Catalunya (ABM/acs/PIV2002-32) to (V.A.S); Generalitat de Cat-
alunya (2004 PIV2 14) to (T.S.); The GC/MS Facility is supported by PHS 
grants P01-CA42710 to the UCLA Clinical Nutrition Research Unit, Stable 
Isotope Core and M01-RR00425 to the General Clinical Research Center. 
The authors also acknowledge the support of the Bioinformatic grant pro-
gram of the Foundation BBVA and the Comissionat d'Universitats i Recerca 
de la Generalitat de Catalunya.

This article has been published as part of BMC Neuroscience Volume 7, Sup-
plement 1, 2006: Problems and tools in the systems biology of the neuronal 
cell.  The full contents of the supplement are available online at http://
www.biomedcentral.com/bmcneurosci/7?issue=S1.

References
1. Mollney M, Wiechert W, Kownatzki D, de Graaf AA: Bidirectional

Reaction Steps in Metabolic Networks: IV. Optimal Design
of Isotopomer Labeling Experiments.  Biotechnol Bioeng 1999,
66:86-103.

2. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H: Determina-
tion of the fluxes in the central metabolism of Corynebacte-
rium glutamicum by nuclear magnetic resonance
spectroscopy combined with metabolic balancing.  Biotechnol
Bioenerg 1996, 49:111-129.

3. Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shul-
man GI, Prichard JW, Shulman RG: Localized 13C NMR spectros-
copy in the human brain of amino acid labeling fromD-[l-
13C]glucose.  J Neurochem 1994, 63:1377-1385.

4. Jeffrey FM, Rajagopal A, Malloy CR, Sherry AD: 13C-NMR: a simple
yet comprehensive method for analysis of intermediary
metabolism.  Trends Biochem Sci 1991, 16:5-10.

5. Szyperski T: Biosynthetically directed fractional 13C-labeling
of proteinogenic amino acids – an efficient analytical tool to
Page 13 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/bmcneurosci/7?issue=S1
http://www.biomedcentral.com/bmcneurosci/7?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7931289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2053137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2053137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2053137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7556192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7556192


BMC Neuroscience 2006, 7(Suppl 1):S7
investigate intermediary metabolism.  Eur J Biochem 1995,
232:433-448.

6. Henry PG, Oz G, Provencher S, Gruetter R: Toward dynamic iso-
topomer analysis in the rat brain in vivo: automatic quanti-
tation of 13C NMR spectra using LCModel.  NMR Biomed 2003,
16:400-412.

7. Lee W-NP, Byerley LO, Bergner EA, Edmond J: Mass isotopomer
analysis: theoretical and practical considerations.  BiolMass
Spect 1991, 20:451-458.

8. Fischer E, Zamboni N, Sauer U: High-throughput metabolic flux
analysis based on gas chromatography-mass spectrometry
derived 13C constraints.  Analytical Biochemistry 2004,
325:308-316.

9. Rothman DL, Behar KL, Hyder F, Shulman RG: In vivo NMR studies
of the glutamate neurotransmitter flux and neuroenerget-
ics: implications for brain function.  Annu Rev Physiol 2003,
65:401-427.

10. Rothman DL, Novotny EJ, Shulman GI, Howseman AM, Petroff OA,
Mason G, Nixon T, Hanstock CC, Prichard JW, Shulman RG: Pri-
chard and R.G. Shulman, 1H-[13C] NMR measurements of
[4-13C]glutamate turnover in human brain.  Proc Natl Acad Sci
USA 1992, 89:9603-9606.

11. Beckmann N, Turkalj I, Seelig J, Keller U: 13C NMR for the assess-
ment of human brain glucose metabolism in vivo.  Biochemistry
1991, 30:6362-6366.

12. Bluml S, Moreno A, Hwang JH, Ross BD: 1-(13)C glucose mag-
netic resonance spectroscopy of pediatric and adult brain
disorders.  NMR Biomed 2001, 14:19-32.

13. Bluml S, Moreno-Torres A, Ross BD: [1-13C]glucose MRS in
chronic hepatic encephalopathy in man.  Magn Reson Med 2001,
45:981-993.

14. Moreno A, Bluml S, Hwang JH, Ross BD: Alternative 1-(13)C glu-
cose infusion protocols for clinical (13)C MRS examinations
of the brain.  Magn Reson Med 2001, 46:39-48.

15. Moreno A, Ross BD, Bluml S: Direct determination of the N -
acetyl-L-aspartate synthesis rate in the human brain by
(13)C MRS and [l-(13)C]glucose infusion.  J Neurochem 2001,
77:347-350.

16. Fitzpatrick SM, Hetherington HP, Behar KL, Shulman RG: The flux
from glucose to glutamate in the rat brain in vivo as deter-
mined by 1H-observed/13C-edited NMR spectroscopy.  J
Cereb Blood Flow Metab 1990, 10:170-179.

17. Künnecke B, Cerdán B, and Seelig J: Cerebal metabolism of [l,2-
13C2]glucose and [U- 13C4]3-hydroxybutyrate in rat brain
as detected by 13C NMR spectroscopy.  NMR Biomed 1993,
6:264-277.

18. Bixel MG, Engelmann J, Willker W, Hamprecht B, Leibfritz D: Metab-
olism of [U- 13C]Leucine in Cultured Astroglial Cells.  Neuro-
chem Res 2004, 29:2057-2067.

19. Jones JG, Solomon MA, Cole SM, Sherry AD, Malloy CR: An inte-
grated (2)H and (13)C NMR study of gluconeogenesis and
TCA cycle flux in humans.  Am J Physiol Endocrinol Metab 2001,
281:E848-E856.

20. Van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA,
Burger HJ, Herling AW, Kuipers F, Meijer AJ, Reijngoud DJ: Acute
inhibition of hepatic glucose-6-phosphatase does not affect
gluconeogenesis but directs gluconeogenic flux toward gly-
cogen in fasted rats. A pharmacological study with the chlo-
rogenic acid derivative S4048.  J Biol Chem 2001,
276:25727-25735.

21. Perdigoto R, Rodrigues TB, Furtado AL, Porto A, Geraldes CF, Jones
JG: Integration of [U- 13C]glucose and 2H2O for quantifica-
tion of hepatic glucose production and gluconeogenesis.
NMR Biomed 2003, 16:189-198.

22. Marin S, Lee WN, Bassilian S, Lim S, Boros LG, Centelles JJ, FernAn-
dez-Novell JM, Guinovart JJ, Cascante M: Dynamic profiling of the
glucose metabolic network in fasted rat hepatocytes using
[1,2-13C2]glucose.  Biochem J 2004, 381:287-294.

23. Katz J, Wood HG: The use of glucose-14 C for the evaluation
of pathway of glucose metabolism.  J Biol Chem 1960,
235:2165-2177.

24. Mason GF, Rothman DL: Basic principles of metabolic modeling
of NMR 13C isotopic turnover to determine rates of brain
metabolism in vivo.  Metab Eng 2004, 6:75-84.

25. Schmidt K, Carlsen M, Nielsen J, Villadsen J: Modeling isotopomer
distributions in biochemical networks using isotopomer
mapping matrices.  Biotechnol Bioeng 1997, 55:831-840.

26. Zupke C, Stephanopoulos G: Modeling of isotope distributions
and intracellular fluxes in metabolic networks using atom
mapping matrices.  Biotechnol Prog 1994, 10:489-498.

27. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA: Bidi-
rectional Reaction Steps in Metabolic Networks: III. Explicit
Solution and Analysis of Isotopomer Labeling Systems.  Bio-
technol Bioeng 1999, 66:69-85.

28. Wiechert W, de Graaf AA: In vivo stationary flux analysis by
13C labeling experiments.  Adv Biochem Eng Biotechnol 1996,
54:109-154.

29. Wiechert W, de Graaf AA: Bidirectional Reaction Steps in Met-
abolic Networks: I. Modeling and Simulation of Carbon Iso-
tope Labeling Experiments.  Biotechnol Bioeng 1997, 55:101-117.

30. Wiechert W, Siefke C, de Graaf AA, Marx A: Bidirectional Reac-
tion Steps in Metabolic Networks: II. Flux Estimation and
Statistical Analysis.  Biotechnol Bioeng 1997, 55:118-135.

31. Mulquiney PJ, Kuchel PW: Modelling Metabolism with Mathe-
matica.  CRC Press, Boca Raton, FL; 2003. 

32. Selivanov VA, Puigjaner J, Sillero A, Centelles JJ, Ramos-Montoya A,
Lee PW, Cascante M: An optimized algorithm for flux estima-
tion from isotopomer distribution in glucose metabolites.
Bioinformatics 2004, 20:3387-3397.

33. Selivanov VA, Meshalkina LE, Solovjeva ON, Kuchel PW, Ramos-
Montoya A, Kochetov GA, Lee PW, Cascante M: Rapid simulation
and analysis of isotopomer distributions using constraints
based on enzyme mechanisms: an example from HT29 can-
cer cells.  Bioinformatics 2005, 21:3558-3564.

34. van Winden W, Verheijen P, Heijnen S: Possible Pitfalls of Flux
Calculations Based on 13C-Labeling.  Metab Eng 2001, 3:151-62.

35. Zupke C, Stephanopoulos G: Modeling of isotope distributions
and intracellular fluxes in metabolic networks using atom
mapping matrices.  Biotechnol Prog 1994, 10:489-498.

36. Kleijn RJ, van Winden WA, van Gulik WM, Heijnen JJ: Revisiting the
C-label distribution of the non-oxidative branch of the pen-
tose phosphate pathway based upon kinetic and genetic evi-
dence.  FEBS J 2005, 272:4970-4982.

37. Dennis JE, Schnabel RB: Numerical Methods for Unconstrained
Optimization and Nonlinear Equations.  Prentice-Hall, Englewood
Cliffs, New Jersey, USA; 1983. 

38. Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical
Recipes in C++: The Art of Scientific Computing.  Cambridge;
2002. 

39. Shulman RG, Rothman DL: Interpreting functional imaging
studies in terms of neurotransmitter cycling.  Proc Natl Acad Sci
USA 1998, 95:11993-11998.

40. Posner MI, Raichle ME: The neuroimaging of human brain func-
tion.  Proc Natl Acad Sci USA 1998, 95:763-764.

41. Fitzpatrick SM, Rothman D: New approaches to functional neu-
roenergetics.  J Cogn Neurosci 1999, 11:467-471.

42. Shepherd GM: The Synaptic Organization of the Brain.  New
York: Oxford Univ Press; 1994. 

43. Zwingmann C, Richter-Landsberg C, Leibfritz D: 13C Isotopomer
Analysis of Glucose and Alanine Metabolism Reveals
Cytosolic Pyruvate Compartmentation as Part of Energy
Metabolism in Astrocytes.  Glia 2001, 34:200-212.

44. Cruz F, Villalba M, Garcia-Espinosa MA, Ballesteros P, Bogonez E,
Satrustegui J, Cerdan S: Intracellular compartmentation of
pyruvate in primary cultures of cortical neurons as detected
by (13)C NMR spectroscopy with multiple (13)C labels.  J
Neurosci Res 2001, 66:771-781.

45. Sonnewald U, Schousboe A, Qu H, Waagepetersen HS: Intracellu-
lar metabolic compartmentation assessed by 13C magnetic
resonance spectroscopy.  Neurochem Int 2004, 45:305-310.

46. Abraham MR, Selivanov VA, Hodgson DM, Pucar D, Zingman LV,
Wieringa B, Dzeja PP, Alekseev AE, Terzic A: Coupling Of Cell
Energetics With Membrane Metabolic Sensing Integrative
Signaling Through Creatine Kinase Phosphotransfer Dis-
rupted By M-Ck Gene Knock-Out.  J Biol Chem 2002,
277:24427-24434.

47. Selivanov VA, Alekseev AE, Hodgson DM, Dzeja PP, Terzic A: Nucle-
otide-gated KATP channels integrated with creatine and
adenylate kinases: Amplification, tuning and sensing of ener-
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7556192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14679502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14751266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12524459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1409672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2054342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2054342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11252037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11378875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11378875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11443709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1968068
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8105858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8105858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8105858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15662840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11346646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11346646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11346646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14558117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14558117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15032751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14404802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14404802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14734257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8623613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8623613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15256408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16002431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16176270
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9448238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9448238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10507889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10507889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11329182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11329182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11329182
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11746401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15145546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967264


BMC Neuroscience 2006, 7(Suppl 1):S7
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

getic signals in the compartmentalized cellular environ-
ment.  Mol Cell Biochem 2004, 256/257:243-256.

48. Rich TC, Fagan KA, Nakata H, Schaack J, Cooper DM, Karpen JW:
Cyclic nucleotide-gated channels colocalize with adenylyl
cyclase in regions of restricted cAMP diffusion.  J Gen Physiol
2000, 116:147-161.

49. Cornish-Bowden A: Fundamentals of Enzyme Kinetics.  3rd edi-
tion. Portland Press, London; 2004. 
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10919863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10919863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10919863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15567526
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Introduction: application of stable isotope tracer data in neuro -biology and -medicine
	Current status of isotopomer distribution analysis
	Algorithms for integrated kinetic and metabolic flux analysis
	Definitions and algorithm for evaluation of all isotope-exchange fluxes
	Reactions between isotopomers
	Fitting algorithm
	Prime results and perspective
	Abbreviations
	Acknowledgements
	References

