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Abstract 

Background: Previous research has reported or predicted, on the basis of theoretical and computational work, 
magnitude sensitive reaction times. Magnitude sensitivity can arise (1) as a function of single-trial dynamics and/or 
(2) as recent computational work has suggested, while single-trial dynamics may be magnitude insensitive, magni-
tude sensitivity could arise as a function of overall reward received which in turn affects the speed at which decision 
boundaries collapse, allowing faster responses as the overall reward received increases.

Results: Here, we review previous theoretical and empirical results and we present new evidence for magnitude 
sensitivity arising as a function of single-trial dynamics.

Conclusions: The result of magnitude sensitive reaction times reported is not compatible with single-trial magni-
tude insensitive models, such as the statistically optimal drift diffusion model.
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Background
Many types of decisions cannot be described by the typi-
cal accuracy-based experimental setting adopted to study 
decision making, in which subjects are rewarded only 
on making a correct choice, or receive a fixed reward at 
the end of the experiment. This is for example the case 
of pervasive value-based decisions; in this case subjects 
are rewarded by the value of the chosen alternative, and 
not only on making a correct choice. Furthermore, in 
many ecological settings, a fast but potentially inaccurate 
decision is to be preferred over a slow but accurate one 
[1–3]. With regards to value-based decisions, this is the 
case in which alternatives are perishable, or when spend-
ing time in making a decision can result in competition 
with other agents. In such cases there is a time cost for 
additional time spent in making a decision. When the dif-
ference between two alternatives is ‘high’, the decision is 
driven in a bottom-up fashion by the difference between 
the two alternatives and the most valuable one is chosen. 

However, the insight behind previous work is that, in 
order to avoid decision deadlocks over difficult decisions, 
decision makers adopt a speed-value trade-off: sacrifice 
negligible accuracy with fast and potentially inaccurate 
decisions [1–3]. Following this rationale, as the magni-
tude of the alternatives increases, decisions are predicted 
to be made faster [1–3].

Interestingly, empirical evidence for a speed-value 
trade-off has been provided [2, 3]. For example, it has 
been found [3] that both humans performing a percep-
tual decision making task, and monkeys performing a 
value-based decision making task, were faster in mak-
ing decisions over two equal alternatives as the mag-
nitude of the alternatives increased. This means that, 
although the difference between alternatives was zero 
across all conditions of interest (but also unequal alter-
natives were presented during the experiments), as the 
overall magnitude increased, decisions were made faster. 
This result is relevant for models of choice such as the 
drift diffusion model (DDM; [4]), which by accumulat-
ing only difference in evidence, cannot accommodate 
the result of decreasing reaction times (RTs) for equal 
alternatives of increasing magnitude. In the experiments 
testing humans, the overall reward that subjects received 
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for any given trial was fixed [2] or subjects were perform-
ing the task in exchange of course credits [3] and reward 
received was not correlated with the overall magnitude 
of the alternatives. This result seems to suggest that the 
observed magnitude sensitivity was not related to over-
all reward received but it was instead a property of the 
decision making process itself, arising from a single-trial 
magnitude-sensitive decision architecture [2, 5–8]. In 
particular, it has been demonstrated [2] that two models 
can exhibit magnitude sensitive decision making: a DDM 
with magnitude dependent noise in which higher mag-
nitude results in higher noise, and the Leaky Competing 
Accumulator (LCA, [9]), an ‘hybrid’ model of decision 
making which is sensitive to both difference and absolute 
input values and that can be conceptualized as a DDM 
which at the initial stages of accumulation is dominated 
by magnitude sensitivity, which affects decision thresh-
olds, and at the later stages of accumulation is instead 
dominated by the difference in evidence between the 
alternatives [10].

Recently, the optimal policy for value-based decision 
making has been derived [11], and it has been shown 
that such policy is implemented by a variant of the DDM 
with boundaries that collapse over time during a trial. 
The slope of the boundary is determined by the utility 
function that subjects receive; when the utility function 
that subjects receive is linear, the slope of the boundary 
is one, meaning that boundaries are parallel. However, it 
has been demonstrated [11] that when the utility func-
tion is not linear or when prior/likelihood distributions 
of reward/evidence are correlated in particular ways (for 
details see [11]), the slope of the boundary ceases to be 
one and the boundaries are not parallel. In their formal 
account of decision making, authors also derived the 
optimal policy for accuracy-based decision making, and 
showed that this is implemented similarly to the case of 
value-based decision making. Although value and accu-
racy-based decision making have been investigated using 
DDMs (for accuracy-based examples see [4]; for value 
based examples, see [12–14]), the work investigating the 
optimal policy for value and accuracy-based decisions 
highlights important qualitative differences between 
accuracy and value based-decision making. First, in 
value-based decision making, thresholds collapse more 
rapidly compared to accuracy-based decisions. Second, 
in value-based decision making, thresholds collapse more 
rapidly as the total reward that subjects receive increases, 
while the optimal policy for accuracy-based decision 
making is insensitive to total reward received [11].

An important difference with previous magnitude 
sensitive accounts [1–3] is that in the optimal policy 
[11], magnitude sensitivity arises as a function of over-
all reward received while in previous accounts [1–3] 

magnitude sensitivity is implemented as a function of 
single-trial magnitude. While the former account seems 
to suggest a ‘top-down’ strategic adjustment of decision 
criteria, dependent upon overall reward received (since 
subjects need to maintain a memory trace of overall 
reward received), in the latter account, magnitude sensi-
tivity arises spontaneously in a ‘bottom-up’ fashion and is 
trial-by-trial dependent (since the decision is exclusively 
driven by the features of the stimulus presented).

Inspired by the literature presented above, here we 
directly test contrasting explanations for magnitude sen-
sitivity; in particular we test for the first time whether 
magnitude sensitivity is dependent upon single-trial 
dynamics and/or upon overall reward received. Fur-
thermore, to strengthen previous results [3], we attempt 
to provide further evidence for magnitude sensitiv-
ity for equal alternatives, using a different experimental 
paradigm.

Testing different explanations for magnitude sensitivity 
can be done by directly comparing goodness of fit of con-
trasting models, or by designing behavioral experiments 
for which different models make different predictions. 
Here, we use a simple behavioral experiment that allows 
us to test predictions regarding magnitude sensitivity at 
the single-trial level and at the overall reward level, and 
that allows us to test a family of models that make dif-
ferent behavioral predictions; in particular, single-trial 
magnitude sensitive models (e.g., [2, 5]) predict single-
trial magnitude sensitivity but do not make specific pre-
dictions regarding an additive effect of overall reward 
received in affecting decision thresholds, while the opti-
mal account [11] predicts single-trial magnitude insensi-
tive RTs for equal alternatives and is affected by overall 
reward received. Together with a simple experiment, 
we review existing theoretical arguments and empiri-
cal results regarding magnitude sensitivity in decision 
making.

In our experiment, subjects were presented with two 
numerosity stimuli; array of dots presented to the left 
and right of a computer screen. In the accuracy-based 
condition, subjects were rewarded on making a cor-
rect choice (i.e., are there more dots on the left or on 
the right?), while in the value-based condition, subjects 
had to choose which of the two stimuli they wanted to 
collect and were paid every 1000 dots they collected. 
There was not a correct or wrong choice in the value-
based session, meaning that subjects were rewarded 
by the value of the chosen alternative, even if the lower 
value alternative was selected. Furthermore, for both 
sessions we created high and low reward scenarios, by 
manipulating the reward that subjects received dur-
ing the accuracy session and the total number of dots 
that subjects could gain in the value based session. All 
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blocks were blocked by duration, rather than by num-
ber of trials and this resulted in a time cost associated 
with longer decisions. Together with the overall reward 
received, we also manipulated single-trial magnitude 
conditions, hence our study included (1) accuracy-
based versus value-based scenarios, (2) high versus low 
overall reward received and (3) a continuum of equal 
alternatives of increasing magnitude that was constant 
across scenarios and overall reward received.

Also here, as done previously [3], although subjects 
were presented with both equal and unequal alterna-
tives, our focus is exclusively on equal alternatives. 
Using unequal alternatives, when the overall magni-
tude is increased while keeping the difference between 
the two alternatives constant, also the discriminability 
between the two stimuli is changed, according to well 
known psychophysical transformations. For example, 
judging a 1 cm length difference between two stimuli 
having an average length of 5 cm is not psychologi-
cally comparable to judging a 1 cm difference in length 
between two stimuli having an average length of 100 
cm. Although the same physical difference between the 
two stimuli is maintained, the two decisions are not 
psychologically directly comparable with regards to 
perceived difference between the stimuli. At the same 
time, it is not possible to define a priori and across-sub-
jects an equally perceived difference between two con-
ditions consisting of unequal alternatives. With equal 
alternatives, the same perceived difference between the 
alternatives (i.e., zero) is instead maintained constant 
when the overall magnitude is varied. For this reason, 
equal alternatives allow to test predictions regarding 
magnitude sensitivity excluding perceptual confounds 
that instead do affect unequal alternatives whenever 
the overall magnitude is manipulated. However, pre-
senting exclusively equal alternatives would result in 
a nonsensical experiment, hence the necessity of mix-
ing our conditions of interest, equal alternatives, with 
unequal alternatives for which it is possible to define a 
correct and a wrong response.

Methods
Participants
Twenty-one participants (11 females) voluntarily took 
part in the experiment and were rewarded monetarily 
on the basis of their performance (details for the reward 
scheme are reported below). Their mean age was 23 
years, and ranged from 20 to 27 years. Subjects were 
healthy university students and had normal or corrected-
to-normal vision. The study received ethical approval 
from the Departmental ethics committee and informed 
consent was obtained from all subjects.

Stimuli and procedure
The stimuli were presented, using PsychoPy [15], on a 36 
× 27 cm CRT screen with a refresh rate of 100 Hz at a 
viewing distance of 57 cm, where the head of the subject 
was positioned on a chin rest.

At 6.5◦ on the left and on the right from the center of 
the screen subjects were presented with the two arrays 
of dots. Such stimuli were previously generated using 
code made freely available [16] which allows to generate 
a set of stimuli in which the continuous variables associ-
ated with numerosity (e.g., area occupied by the stimulus, 
dot diameter etc) are randomly varied across stimuli. For 
example, for a stimulus consisting of 12 versus 10 dots, 
the area occupied by the 10 dots array could be either 
smaller or bigger than the area occupied by the 12 dots 
array. Each array of dots was drawn within a 10 by 10◦ 
image, and subsequently presented on screen during the 
experiment. For each condition multiple array combina-
tions were generated (i.e., subjects were not presented 
one stimulus per condition throughout the experiment). 
Stimuli values are reported in Table  1, while a stimulus 
example and trial sequence is reported in Fig. 1. Stimuli 
consisted of both equal (i.e., same number of dots on the 
left and on the right) and unequal alternatives.

The experiment consisted of two different sessions, 
the accuracy-based session and the value-based ses-
sion, and of two types of rewards, high and low reward. 
In the value-based session, subjects gained 1 yuan every 
1000 dots they collected. There was no correct or wrong 
response, meaning that if subjects chose the array with 
less dots, they were still rewarded by the number of cho-
sen dots. In the high-reward session, stimuli with more 
dots had a higher probability of being presented, hence 
subjects would on average gain more reward. Conversely, 

Table 1 Stimuli values and  probability, averaged 
across  participants, that  a  specific stimulus pair 
was  displayed during  a  high reward (HR) block or  a  low 
reward (LR) block

Conditions of interest, equal alternatives, always had the same probability of 
being presented on screen, across sessions (accuracy versus value) and overall 
reward received (high versus low). In particular, each pair of equal alternatives 
(e.g., 12 versus 12 dots, 18 versus 18 dots etc) had a probability of .04 of 
being presented, for a total of 20% of equal alternatives presented during the 
experiment

Dot pairs HR probability LR probability

Equal alternatives (12, 18, 24, 
30 or 36 dots)

0.040 0.040

12 vs 10 OR 12 vs 14 0.068 0.108

18 vs 15 OR 18 vs 21 0.061 0.089

24 vs 20 OR 24 vs 28 0.075 0.074

30 vs 25 OR 30 vs 35 0.088 0.062

36 vs 30 OR 36 vs 42 0.108 0.067
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for the low-reward condition, stimuli with fewer dots 
had a higher probability of being presented during each 
block. The probability of a dot pair to be presented 
for the high and low reward conditions is reported in 
Table 1. Subjects were explicitly instructed not to count 
the dots, and performed four 10-min blocks. After each 
block they could take a self-paced break. For the value-
based session, the four sessions could randomly consist 
of two high and then two low-reward conditions or vice 
versa (the order was counterbalanced). After each trial 
subjects were presented the number of dots collected for 
a time that could randomly vary between .3 and .7 s, after 
which a new trial was presented.

For the high-reward accuracy condition subjects 
were rewarded .08 yuan for a correct response; for the 
low-reward accuracy condition subjects were instead 
rewarded .04 yuan for a correct response. If subjects were 
correct, they were presented ‘correct’ for .3 s, while if they 
were wrong they were presented ‘wrong’ for 1 s. Hence, 
there was a time cost associated with a wrong response. 
It was necessary to introduce a time cost, since it has 
been shown [10] that in a task in which the total block 
duration is fixed, and for which there is no time penalty 
for a wrong response, the optimal strategy is answering 
randomly as fast as possible. Also in this case, subjects 
performed four 10-min blocks. For the accuracy-based 
session, the four sessions could randomly consist of two 
high and then two low-reward conditions or vice versa. 
Each block had a probability of a dot pair to be presented 
as reported in Table  1; however there was no relation 
between block reward and probability of a dot pair to 
be selected (i.e., as there was indeed for the value-based 
session). For the accuracy-based session, the accuracy 

feedback for equal alternatives was randomly determined 
as correct or wrong.

For both the value and accuracy based condition, at 9 ◦ 
from the center of the screen subjects were presented 4 ◦ 
white digits counting down from 600 to 0 (i.e., 10 min = 
600 s). When the time finished, subjects were presented 
‘time finished’ for 500 ms.

For both the accuracy-based and value-based sessions 
there was no relation between trial magnitude and trial 
number, meaning that different magnitude conditions 
were presented randomly.

Subjects performed the accuracy and the value-based 
sessions in random order (counterbalanced across 
subjects).

Before the experiment started, subjects performed a 
single 10 min session to familiarize with the trials. Here, 
they were instructed to decide whether there were more 
dots on the left or on the right and after each trial they 
were presented, for a random duration between .3 and .7 
s, if they were correct or wrong and how many dots they 
selected for the specific trial. For the training, the prob-
ability of a dot pair to be presented was constant across 
conditions.

Results
Behavioral analyses
We specifically focused on conditions of interest, equal 
alternatives. Regarding equal alternatives, no data were 
excluded from the analyses. We ran a repeated measures 
ANOVA and we included the following three factors and 
all possible interactions: session (accuracy-based versus 
value-based), overall reward received (high vs low) and 
trial magnitude (12, 18, 24, 30 or 36 dots). Analyses based 

Fig. 1 Stimulus example and trial sequence for the training phase. The number on top indicates the seconds left before the block is going to finish. 
After 100 ms, during which participants were presented a blank screen, the two dots array were presented. In the specific example, 18 versus 20 
dots are presented. Subjects could make a response in their own time. After giving a response, during the training subjects were presented with 
visual feedback for a duration that could randomly vary between 300 and 700 ms. The feedback (not to scale in this example) shows a training 
trial during which participants were shown if they were correct or wrong (wrong in the specific example) and the number of dots collected. In the 
accuracy block only the accuracy feedback was provided and if subjects were correct the feedback was presented for 300 ms otherwise if they 
were wrong the feedback was presented for 1000 ms. In the value-based session only the information regarding the number of dots collected was 
provided for a random duration between 300 and 700 ms
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on log-transformed RTs yielded similar results, hence for 
simplicity and ease of communication we focus on the 
analyses on raw RTs.

For equal alternatives, as can be seen from Fig.  2, 
session affected mean RTs, F(1,20) = 11.16, p= .003, 
η
2
= .358 , but overall reward received did not (p = .819). 

A further significant effect was that of trial magnitude, 
Fig. 2, F(4,80) = 5.05, p < .001 , η2 = .216 , showing that 
RTs decreased as magnitude increased. A post-hoc mixed 
effect regression of trial magnitude on mean RTs for 
which we included random slopes and intercepts con-
firmed that RTs significantly decreased as magnitude 
increased, b = − .003 (95% CI − .004, − .001), p < .001 . 
All other main effects and interactions did not reach 
significance, p > .16 . For none of the magnitude condi-
tions, participants had a probability of choosing left over 
right higher than chance (all p > .1 ), showing that sub-
jects were not biased in choosing one alternative over the 
other.

Although our focus is on equal alternatives, here we 
also report results for unequal alternatives. When only 
unequal alternatives were considered, the exact same 
pattern reported for equal alternatives was replicated 

for RTs. In particular, as shown in Fig. 3, session affected 
mean RTs (mean difference between the two sessions = 
.196 s), F(1,20) = 9.457, p= .0006, η2 = .321 , but over-
all reward received did not (p = .805). Trial magnitude 
affected RTs, Fig. 3, F(9,180) = 7.119, p < .001 , η2 = .262 . 
A mixed effect regression for magnitude on mean RTs 
resulted significant, b = − .002 (95% CI − .003, − .001), 
p < .001.

When data were analyzed with regards to difference, 
Fig. 4, RTs differed between sessions F(1,20) = 9.851, p = 
.005, η2 = .330 with a mean difference of .198 s between 
the slower accuracy-based session and the faster value-
based session. Difference affected RTs, F(5, 100) = 9.824, 
p < .001 , η2 = .329 , showing that RTs decreased when 
difference increased. A mixed effect regression for differ-
ence on mean RTs resulted significant, b = −  .009 (95% 
CI −  .01, −  .005), p < .001 . Note, as we have shown, 
magnitude affects RTs, and equal alternatives had a mean 
magnitude of 24. The effect of magnitude might render 
such conditions slightly faster (although not significantly) 
than conditions having a difference of 2 and for which 
overall magnitude was 12. This pattern suggests that the 
effect on RTs driven by doubling magnitude from 12 to 

12 18 24 30 36

magnitude

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

R
T
s
 
(
s
)

session:acc, reward:high

session:acc, reward:low

session:value, reward:high

session:value, reward:low

average magnitude effect

Fig. 2 Effects of session and magnitude on RTs of equal alternatives. Overall reward received did not affect RTs. The thicker line represents the main 
effect of magnitude. Error bars represent standard error of the mean
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24 dots may be stronger than the effect on RTs driven by 
a difference of 0 versus 2 dots.

Model fitting
One model that could account for magnitude sensitiv-
ity at the single trial level is the LCA [9], which can be 
approximated by a DDM [4] with magnitude sensitive 
decision thresholds. The LCA can be conceptualized as 
a DDM that at the early stages of evidence accumulation 
is magnitude sensitive and that at the later stages of evi-
dence accumulation is instead dominated by difference 
between the alternatives [10]. We reasoned that if we fit a 
DDM with magnitude sensitive boundary separation for 
the equal alternatives, for which difference in evidence/
value could not have played any role, we should find the 
estimated boundary to significantly differ across magni-
tude conditions, and this would provide further proof for 
magnitude sensitivity at the single-trial level. Note how-
ever that in the canonical DDM [4], the boundary sepa-
ration is not stimulus dependent and it is generally set 
before stimulus appearance.

The parameters that define the DDM are (1) the 
boundary separation, which reflects the speed-accuracy 
trade-off adopted by subjects and their response con-
servativeness (2) the non-decision time, which reflects 
the time to encode the stimulus and execute the motor 
response, (3) across-trial variability in non-decision time, 
(4) the drift rate, which reflects the information carried 
by the stimulus which in our case it is null, (5) across-trial 
variability in drift rate, (6) the bias for a response which 
represents a priori commitment towards one of the two 
alternatives and (7) its across-trial variability.

In order to estimate the DDM parameters we used 
DMAT [17] for Matlab. Using the options provided by 
DMAT, we opted for a chi-square minimization fitting 
routine of the data represented by five different bin edges 
for ‘left’ and ‘right’ responses. We fitted a constrained 
model in which each session was fitted separately for 
each subject. Given that reward did not affect our behav-
ioral data, we collapsed conditions across reward. The 
model that we fitted allowed the boundary to be a linear 
function of trial magnitude, while all other parameters 
were kept constant within each session.

11   13    16.5  19.5  22    26   27.5  32.5     33 39   
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Fig. 3 Effects of session and magnitude on RTs of unequal alternatives. Overall reward received did not affect RTs. The thicker line represents the 
main effect of magnitude. Error bars represent standard error of the mean
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A table of estimated parameters is reported in Table 2. 
We run Wilcoxon-signed rank tests on the estimated 
parameters. If boundary was not affected by magnitude, 
we should expect the slope of the boundary not to dif-
fer from zero for both sessions. However, for both ses-
sions, the slope of the boundary was significantly lower 
than zero (M = − .019, SD = .054, p = .041 for the accu-
racy session and M = − .044, SD = .097, p = .012 for the 
value session), showing that the boundary significantly 
decreased when single-trial magnitude increased. The 
difference between the two slopes was not significant (p 
= .838). The intercept of the two boundaries differed sig-
nificantly between sessions (p = .011), and it was higher 
for the accuracy than for the value session (M = .166, SD 
= .063 for the accuracy session and M = .15, SD = .11 for 

the value session), confirming once again that subjects 
were more cautious for the accuracy-based session com-
pared to the value-based session.

Regarding the bias, it did not differ from the unbi-
ased level for both sessions ( p > .89 ) and it did not dif-
fer between sessions ( p ∼ 1 ). However, the difference in 
variability in bias between the two sessions was margin-
ally significant (p = .046) and higher in the accuracy than 
in the value session (M = .062, SD = .06 for the accuracy 
session and M = .039, SD = .052 for the value session).

As expected subjects had a higher non-decision time 
for the accuracy session (M = .468, SD = .212) than for 
the value based session (M = .365, SD = .329, p = .022), 
suggesting that between sessions subjects decreased 
their time to execute the motor response. The across trial 
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Fig. 4 Effects of session and difference on RTs of unequal alternatives. Overall reward received did not affect RTs. The thicker line represents the 
main effect of difference. Error bars represent standard error of the mean

Table 2 Table of estimated parameters for the accuracy-based and value-based session

‘Ndt’ stands for ‘non-decision time’, while ‘var’ stands for ‘variability’. Statistical tests comparing the two sessions are reported in the main text

Session Bounary 
intercept

Boundary slope Ndt Var. drift Bias Var. bias Var. ndt Drift

Accuracy .166 − .019 .468 .179 .506 .062 .275 − .005

Value .150 − .044 .365 .279 .495 .039 .340 − .024
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variability in non decision time did not vary significantly 
between sessions (p = .374).

As expected the drift rate did not vary between ses-
sions (p = .272) and was indistinguishable from zero 
( p > .275 ). However, the parameter capturing across-
trial variability in drift rate, differed between sessions (p 
= .02) and was lower in the accuracy than in the value 
session (M = .179, SD = .163 for the accuracy sesssion 
and M = .279, SD = .154 for the value session). Across-
trial variability in drift rate can be interpreted as variation 
in attention/motivation [17]. This result suggests that, in 
line with our hypotheses, subjects were paying less atten-
tion to the stimuli in the value-based session compared 
to the accuracy-based session.

In order to investigate the goodness of fit of our model, 
a chi-square test tested the discrepancy between pre-
dicted and observed quantile RTs; 76% of all datasets 
had a lower value than the critical value of a chi square 
at p < .05 with degrees of freedom equal to the number 
of degrees of freedom in the data minus the number of 
parameters of the model. This result confirms that the 
model can account for the data well.

Discussion
Here, we have investigated whether magnitude sensitiv-
ity arises as a consequence of single-trial magnitude sen-
sitivity and whether overall reward received results in 
threshold adjustments, allowing faster RTs as the overall 
reward received increases [11]. In addition, we attempted 
to replicate the result of magnitude sensitivity in human 
decision making [2, 3] using a different experimental 
paradigm. In our experiment we manipulated the reward 
structure, value-based versus accuracy-based, the over-
all amount of reward that subjects received, high versus 
low, and the single trial magnitude. Our results show (1) 
a replication of previous results showing magnitude sen-
sitive RTs for equal alternatives in decision making [2, 3], 
(2) single-trial magnitude modulates RTs while overall 
reward received, in our task, did not affect RTs.

Together with previous studies [2, 3] in which it is 
important to recall that overall reward was fixed across 
trials, our results seem to challenge the prediction of the 
optimal account [11]. In the optimal account, the dynam-
ics of a single trial are dominated by difference in evi-
dence alone, while it is overall reward received to affect 
the speed at which boundaries decrease. Furthermore, in 
the optimal account [11], the result of magnitude sensi-
tivity for equal alternatives is expected only when deci-
sion boundaries are not parallel (in [18] an in-depth 
discussion regarding this issue is provided); the opti-
mal account with parallel-collapsing boundaries cannot 
accommodate magnitude sensitive RTs for equal alter-
natives since single-trial dynamics are driven by input 

difference alone, hence all equal alternatives are pre-
dicted to have same RTs since input difference is constant 
and equal to zero.

A further factor to consider when comparing the opti-
mal magnitude-sensitive account [11] and the single-
trial magnitude sensitive accounts is that, in the former, 
subjects should know the reward structure of the task in 
order to adjust their decision thresholds. As discussed in 
a previous theoretical paper [1], in many naturalistic set-
tings, subjects do not have access to such information; 
hence a mechanism that spontaneously exhibit trial-by-
trial magnitude sensitive behavior without knowledge 
of the reward structure explains magnitude sensitive 
decision making more parsimoniously compared to a 
mechanism that requires a priori, trial-by-trial updated 
knowledge of the reward structure and of the overall 
reward of a specific task. Our modeling results show 
that trial magnitude affects the decision boundary and 
this in turn results in faster and potentially less accurate 
decisions.

Here, we did not find support for the role of total 
reward received in decreasing decision thresholds, not 
for accuracy-based nor for value-based decisions. We are 
cautious in interpreting negative results and we do not 
take this result as compelling evidence that overall reward 
received does not affect threshold adjustment in simple 
value-based and accuracy-based decisions. It is possible 
that the difference in reward between the two sessions 
might not have motivated subjects towards decreas-
ing the threshold further in order to accumulate more 
reward. Another factor to consider is that, in the low 
reward value-based session subjects had a mean RT of 
about .650 s; recall that subjects had to estimate two sep-
arate stimuli and it is possible that the mean RT of .650 s 
is already the asymptotic RT for such type of decisions, 
meaning that no manipulation could have decreased the 
boundary separation further. Also, it is possible that the 
specific type of stimuli that we have used might not have 
elicited the expected result; future investigations could 
use intrinsically valued stimuli, such as food images, in 
order to elicit the phenomenon of interest.

However, using intrinsically valued stimuli is problem-
atic for the presentation of equal alternatives, and for the 
manipulation of difference and magnitude. Furthermore, 
the operationalization itself of intrinsically valuable stim-
uli is particularly noisy since it relies on tools such as Lik-
ert scales (e.g., in order to make a judgment regarding the 
value of a specific stimulus such as an image represent-
ing food). With regards to our hypotheses, our approach 
allowed us a thorough control of possible confounds and 
a better operationalisation of difference, magnitude and 
overall reward which were dependent upon physical fea-
tures of the stimuli. Furthermore, a crucial factor to point 
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out is that, regardless of an additive role of total reward in 
magnitude sensitivity, our results, together with previous 
results showing magnitude sensitivity for equal alterna-
tives [3], show that a single-trial purely relative decision 
making model alone, such as that proposed by the opti-
mal account [11] or the canonical DDM [4] in which the 
boundary separation is fixed across magnitude condi-
tions, cannot accommodate the magnitude sensitivity 
that we have observed. Our result can be accounted by 
magnitude sensitive models such as the LCA [9], as our 
model fitting suggests by showing magnitude sensitive 
decision boundaries. However, we do not exclude other 
theoretical explanations. Recent research has shown the 
presence of magnitude dependent noise [19, 20] and it 
has been shown [2] that a DDM with magnitude depend-
ent noise can account for magnitude sensitivity. Our 
results are also in line with this account in which mag-
nitude sensitivity is dependent upon magnitude sensitive 
noise in the decision process, and with other magnitude 
sensitive accounts such as the models inspired by magni-
tude sensitive decision dynamics in honeybee colonies [5, 
6], or the sequential choice model [21]. Alternative dif-
fusion models in which, given theoretically plausible rea-
sons, magnitude manipulations are directly mapped onto 
parameters variations could also account for the type of 
results that we have observed here.

Evidence contrasting collapsing boundary explana-
tions comes from the studies that have investigated this 
phenomenon in human perceptual and value-based deci-
sion making [12, 22, 23], using both large scale analysis 
of previously published data and newly ad-hoc investiga-
tions. Such studies have reported low-to-no support for 
collapsing boundaries in human decision making. Here 
we do not rule out the possibility that non-parallel deci-
sion making boundaries could provide an explanation for 
magnitude sensitivity for equal alternatives in decision 
making. However, we believe that the likelihood for such 
a scenario is low given that, to our knowledge, to date no 
studies have provided empirical or even theoretical sup-
port (with the exception of [11]) for non-parallel decision 
making boundaries. Furthermore, if simple models with 
fixed boundaries provide a better description compared 
to more complex parallel collapsing boundaries models 
[12, 22, 23] it is not clear why even more complex mod-
els, non-parallel collapsing boundaries, should provide 
a better description (i.e., a better trade-off between sim-
plicity and goodness of fit) compared to parallel-collaps-
ing or fixed boundaries.

The single-trial magnitude sensitivity that we observe 
cannot be explained by hypothesizing that subjects are 
actively adjusting their decision threshold during each 
trial in order to optimize reward rate for each single 
trial. Research has shown that the decision criterion is 

generally ‘slow’ to be actively adjusted, and it is gener-
ally set before stimulus appearance (see [4, 10]). In our 
case, the threshold adjustment at the single-trial level 
arises from the dynamics of the model itself, without any 
active commitment to adjust decision criteria. Although 
in our conceptualization of the LCA (a DDM with mag-
nitude sensitive decision boundaries), magnitude sensi-
tivity is described by threshold adjustment, in the LCA 
[9], magnitude sensitivity is generated spontaneously as 
a consequence of the lateral inhibition between evidence 
accumulators.

In our investigation we also found strong support for 
a difference between value and accuracy-based sessions 
in the relative speed that subjects had in order to make 
a decision, supporting a qualitative prediction for the 
difference between accuracy and value based decision 
making [11]. However, the DDM decomposition of data 
showed that in our case there was a difference between 
the intercept of the boundary separation between the 
accuracy-based and value-based sessions, but the magni-
tude-dependent slope did not differ. This result seems to 
suggests that while the baseline threshold varies between 
accuracy and value based session, the effect of single-trial 
magnitude on RTs does not differ between accuracy-
based and value-based sessions. The result of faster deci-
sions between accuracy and value-based instructions has 
similarities with how subjects adjust their decision cri-
terion in accuracy compared to speed instructions [4]. 
This is a classical result in perceptual decision making, 
in which emphasizing speed over accuracy results in a 
decrease in boundary separation and in faster but more 
inaccurate responses. Overall, the result of faster and 
potentially less accurate decisions in value-based decision 
making compared to accuracy-based decision making 
can be attributed to the explanations already proposed 
[1–3]. Given that there is no correct or wrong response, 
faster but potentially inaccurate decisions that sacrifice 
small amount of accuracy, result in overall higher reward 
compared to the situation in which accuracy is stressed. 
This interpretation is also in line with theories of loss 
aversion [24] or avoidance of punishment [25] that could 
explain why subjects decrease their speed in order to 
increase accuracy in the accuracy based session.

If the result of behavioral performance deviating from 
the optimal account is corroborated by future investiga-
tion employing different stimuli and manipulations, an 
outstanding question for future research will be that of 
understanding why this is the case. For example future 
research could investigate whether single-trial magnitude 
sensitivity is due to biological constraints of the deci-
sion mechanism, as proposed by the multiplicative DDM 
account (see [2]). Another important question for future 
research could be investigating whether, by relaxing some 
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of the assumptions made by the optimal account, it is 
possible to accommodate single-trial magnitude sensitive 
data within an optimal account. We believe that these 
questions could drive future fruitful projects.

Conclusion
In conclusion, we show and corroborate evidence that 
magnitude sensitivity in decision making arises from sin-
gle-trial dynamics in a bottom-up fashion. This result is 
incompatible with single-trial, statistically optimal, mag-
nitude insensitive models, such as celebrated drift diffu-
sion models.
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