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Abstract 

Background:  In this study, nonlinear based time–frequency (TF) and time domain investigations are employed 
for the analysis of electroencephalogram (EEG) signals of mild cognitive impairment–Alzheimer’s disease (MCI–AD) 
patients and healthy controls. This study attempts to comprehend the cognitive decline of MCI–AD under both rest-
ing and cognitive task conditions.

Results:  Wavelet-based synchrosqueezing transform (SST) alleviates the smearing of energy observed in the spec-
trogram around the central frequencies in short-time Fourier transform (STFT), and continuous wavelet transform 
(CWT). A precise TF representation is assured due to the reassignment of scale variable to the frequency variable. It is 
discerned from the studies of time domain measures encompassing fractal dimension (FD) and approximate entropy 
(ApEn), that the parietal lobe is the most affected in MCI–AD under both resting and cognitive states. Alterations in 
asymmetry in the brain hemispheres are analysed using the homologous areas inter-hemispheric symmetry (HArS).

Conclusion:  Time and time–frequency domain analysis of EEG signals have been used for distinguishing various 
brain states. Therefore, EEG analysis is highly useful for the screening of AD in its prodromal phase.

Keywords:  Alzheimer’s disease, Electroencephalography, Synchrosqueezing transform, Approximate entropy,  
Fractal dimension, HArS
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Background
Alzheimer’s disease (AD), a progressive brain disor-
der, considered to be in the category of dementia, gen-
erally occurs in the latter part of life. Degeneration of 
brain cells and the incidence of senile plaques are some 
of the changes found in the brain of AD patients [1]. It 
was reported by Brookmeyer et al. that by the year 2050, 
the total worldwide AD population would be 106.2 mil-
lion with the chance of one in 85 persons suffering from 
AD. Approximately 48% of AD cases would be in Asia, 
with the percentage rising to 59% by 2050 [2]. It was also 
reported that ‘the community whose damage to the brain 
cells can’t be reversed is likely to rise to 152 million by 
2050’ [3].

EEG represents the electrical brain activity, measured 
using electrodes placed on the scalp of the human brain. 
EEG signals could easily characterise clinical manifesta-
tions of various neurological disorders. Hence, EEG can 
be used efficiently as a diagnostic tool. Changes in EEG 
time series are concomitant with varying dynamics of 
brain function. EEG signals are used for the analysis of 
pathological conditions such as mild cognitive impair-
ment [4], Schizophrenia [5, 6], Parkinson’s disease (PD) 
[7, 8] and Epileptic Seizure detection [9, 10]. Signal-pro-
cessing techniques are used for the feature extraction and 
characterisation of EEG signals of various brain diseases.

Neuronal interactions occurring at various levels of 
temporal and spatial scales have nonlinear behaviour. 
The concept of nonlinear dynamics is widely used in the 
analysis of time series obtained from the human brain. 
The dynamics of the brain are comprehended using 
EEG signals. Hence, nonlinear methods are suitable for 
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the analysis of EEG signals [11–13]. Both time domain 
and TF domain methods are employed for extract-
ing reliable information from EEG signals of MCI–AD 
patients for further characterisation. The performance 
of the brain is evaluated under resting and cognitive 
states using the nonlinear time domain measures of FD 
and ApEn. Time-varying spectral properties of MCI–
AD are presented lucidly using a time–frequency reas-
signment (TFR) method, SST.

Time–frequency representations (TFRs) are a graphi-
cal display that enable easy signal interpretation, anal-
ysis, detection of time and frequency information. 
STFT and WT are some of the techniques used to 
analyse non-stationary signals in both the domains of 
time and frequency. STFT based on fast Fourier trans-
forms (FFT), was widely used earlier for the analysis 
of the signal in time and frequency domain. The spec-
tral estimates of the mean and relative power in higher 
frequency bands of the EEG signal are studied using 
varying configurations of STFT [14]. STFT was used 
to obtain the spectrogram of different channels of EEG 
recordings from AD. The extraction of EEG features 
and the generation of classification models for the diag-
nosis of AD were reported by Podgorelec [15]. STFT 
extracted spectrogram features were employed in the 
classification of EEG signals [16].

STFT fails to represent both time and frequency infor-
mation of EEG signal simultaneously. The TF trade-
off that occurred in the STFT is overcome by WT. WT 
offered better spectral features than FFT and was well 
recognized for the detection of brain diseases [17]. Deci-
sion tree algorithm was employed to identify the best 
discriminating feature of AD from DWT decomposed 
EEG signals obtained under active and resting states [18]. 
Decision tree classifier could effectively classify MCI, AD 
and normal control with higher accuracy, using wavelet 
features than Fourier based features [19].

Nonlinear TF methods are found to be appropriate for 
the analysis of time series. STFT and CWT have played 
an imperative role in the fields of engineering and sci-
ences. The smearing of the components usually impede 
the interpretations of spectral decomposition. A highly 
localised technique SST, overcome the drawbacks caused 
by STFT and CWT with the estimation of instantaneous 
frequency and frequency reassignment property. Instan-
taneous frequency can be estimated from the modulus 
of TF representation employing SST. SST not only pro-
vides spectral analysis but also decomposes a signal with 
higher precision in time and frequency [20]. Reassign-
ment techniques sharpen the TF representation even in 
the multi-component signal and retain temporal locali-
sation [21]. SST is applicable for the quantification of 
dynamical features of respiratory and EEG signal [22], for 

the detection of sleep spindles [23] and sleep stage visu-
alisation and prediction algorithm [24].

Several nonlinear measures are used for evaluating the 
complexity of bio-signals. Nonlinear EEG signal analy-
sis has been used to distinguish the various states of the 
brain. The irregularity associated with the time series is 
quantified using ApEn. Reduced values of ApEn, largest 
lyapunov exponent (LLE) and correlation dimension (D2) 
were reported for controls subjected to sound/reflexo-
logic stimulation [25]. Abásolo et al. reported considera-
bly lower ApEn values for AD patients [26] in the parietal 
region [27]. A decline in EEG irregularity was observed 
for AD patients  using ApEn and auto mutual informa-
tion (AMI). The low values revealed the dysfunction 
among different regions of the brain during Alzheimer’s 
[28, 29]. Slowing and complexity lowering of EEG signals 
were reported in MCI and mild AD patients, compared 
with healthy controls [30].

Occipital EEG changes were quantified using FD and 
highly reduced FD values for the autopsy-confirmed 
AD than probable AD group [31]. A relation between 
EEG bandpower and diminished values of FD has been 
reported for AD [32]. FD analysis using quantitative EEG 
with classification algorithms could effectively categorise 
AD and normal aging [33]. Reductions in the value of FD 
in AD patients confirmed the deterioration of the dimen-
sional complexity of brain activity [34]. FD of cerebral 
cortical ribbon was considered as a biomarker of cer-
ebral cortex structure in the mild AD [35]. A combina-
tion of FD calculations with entropy analysis of 3D brain 
scans was utilized for AD diagnosis [36]. Speech mark-
ers resulting from spontaneous speech (SS) were helpful 
for the early diagnosis of AD [37]. FD, LZC and Tsallis 
entropy (TsEn) values computed for different frequency 
bands revealed lower values for AD subjects than for 
healthy controls [38].

Numerous studies have been reported on the hemi-
spherical asymmetry of brain activity during aging. 
Inter-hemispheric differences were reported to be higher 
in the right hemisphere than in the left during resting 
state, with eyes closed (awake) when compared to vari-
ous  sleep stages [39]. Only a limited number of studies 
have emerged in the analysis of inter-hemispheric asym-
metry, using EEG signal. Studies were carried out to ana-
lyse the correlation of psychological pain in adults with 
depression using calculations of Frontal fractal dimen-
sion asymmetry (FFDA) and frontal alpha asymmetry 
[40]. Significant reduction in FD was reported in elderly 
subjects at central-parietal regions in the right brain 
hemisphere, compared with the left hemisphere [41].

EEG signal analysis is applied to identify various brain 
dynamics of MCI–AD subjects. Most of the earlier stud-
ies concentrated on either one or two mental conditions, 
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whereas the present study comprises four protocols of 
eyes open (EO), eyes closed (EC) classified under rest-
ing states and MAEO (mental arithmetic eyes open) and 
MAEC (mental arithmetic eyes closed) classified under 
cognitive states. The current study proposes TF analysis 
on the EEG signals of MCI–AD patients using SST, CWT 
and STFT. The energy distribution of the MCI–AD EEG 
signal in the TF plane can be displayed using SST. The 
blurring effect of energy concentration should be reduced 
for the proper TF representation of MCI–AD EEG signal. 
The present work also attempts to depict time domain 
measures using FD and ApEn to characterise EEG signals 
of MCI–AD subjects. The nonlinear time domain fea-
tures are extracted from healthy and MCI–AD to exam-
ine the cognitive decline occurring in specific lobes of 
the brain. Asymmetry alterations in the MCI–AD brain 
hemispheres were analysed using HArS. Using the time 
domain analysis, we aspired to test the hypotheses that (i) 
cognitive decline in MCI–AD is higher under cognitive 
task condition (ii) impairment is conspicuous in parietal 
lobe in MCI–AD under cognitive states (iii) asymmetric 
alterations exist in the right and left hemispheres of the 
brain in MCI–AD.

Results
STFT, CWT and SST
Precise representation of the energy concentration of 
different frequency bands of EEG signals of MCI–AD 
patients and controls were carried out using STFT, CWT, 
and SST. Time–frequency representations (TFRs) aid 
in the identification of signal features such as the sig-
nal component presented and the energy concentra-
tion. STFT and WT fall under the category of linear TF 
distributions, while SST is a nonlinear TF method. TF 
methods can detect the oscillatory signals with time-var-
ying amplitude and frequency. Six-level multi-resolution 
decomposition using db10 was adopted for the extrac-
tion of different frequency bands of the EEG signal. db10 
showed maximum correlation coefficient with the EEG 
signals of MCI–AD. The three time–frequency methods 
were employed on the wavelet decomposed levels of delta 
(A6)-(0–3.125); theta (D6)-(3.125–6.25); alpha (D5)-
(6.25–12.5); beta (D4)-(12.5–25) and gamma (D3)-(25–
50). The analysis had been carried out on EEG signals 
acquired from MCI–AD patients and healthy controls at 
different electrode locations. Various wavelet filters such 
as Bump, Gauss, Morlet and Mhat were used for SST 
analysis, of which Morlet Wavelet filter was used for fur-
ther analysis. Morlet wavelet enabled us to gain insight 
into both time and frequency contents of the energy con-
centration in specific frequency bands.

Figure  1 displays the energy concentration in the 
delta band (0–3.125  Hz) of the EEG signal acquired 

from the parietal (P3) location for an MCI–AD patient 
using STFT, CWT and SST. The STFT and CWT 
plots ‘smear’ the energy content of the signal result-
ing in decreased clarity of the frequency content pre-
sented. Gaussian window with length 256 and overlap 
of length 255 was used for STFT. SST plot gave a bet-
ter frequency localisation so that the exact frequency 
information could be identified from the spectrogram 
analysis. Specific energy concentration at particu-
lar time duration was obtained at  different frequency 
bands of α, β, γ and θ for signals of healthy subjects and 
MCI–AD patients.

STFT considers a signal stationary over the window 
and maps the signal to TF plane. The short window of 
STFT produces smearing in the frequency direction, 
whereas the use of the long window produces spread-
ing in the time direction. STFT failed to achieve proper 
localisation in time and frequency domains according 
to the Heisenberg uncertainty principle. The principle 
states that a signal cannot be localised with high preci-
sion in both time and frequency [42, 43].

SST, a nonlinear TF technique, allows decoupling the 
spectra of the oscillatory components from EEG and 
remains stable despite errors in the signal. SST is an 
adaptive and invertible TF tool designed for the extrac-
tion and comparison of oscillatory components. SST 
provides precise frequency representation of the signal 
through mode decomposition with time-varying oscil-
latory characteristics. Compared to linear transforms, 
SST plots concentrate on the frequency components 
presented in the signal with reasonable accuracy [23, 
44]. STFT plot of MCI–AD subjects displayed a spread 
out in low to high frequency contents. CWT based TF 
plot concentrates frequency components in the time-
scale (TS) plane. SST reassigns scale variable of the 
wavelet to frequency, improves the TF representation 
of the signal [45]. TF analysis using SST improved the 
energy representation of MCI–AD subjects compared 
with those in STFT and CWT.

Nonlinear parameters
The nonlinear parameters of FD and ApEn were cal-
culated for the EEG signals acquired from the 23 elec-
trode positions of MCI–AD and healthy controls. The 
parameters were calculated both for patients and con-
trols at various lobes under resting and cognitive task 
conditions. The brain activity decline was correlated 
with the signal complexity using nonlinear measures of 
ApEn and FD for patients. The presence of asymmetry 
in homologous brain regions of the two brain hemi-
spheres was ascertained using the computed values of 
FD.
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Fractal dimension
In this analysis, FD is used for measuring the complex-
ity of electrical brain activity in MCI–AD patients and 

healthy controls. FD is based on a nonlinear dynamical 
system theory that captures nonlinear changes inher-
ent in signal amplitude and frequency [46, 47]. FD is 

a b                                        

c d

Fig. 1  Comparison of energy concentration in delta band (0–3.125 Hz) EEG signal acquired from the parietal location (P3) for an MCI–AD patient 
under resting protocol a EEG signal, b STFT of a, c CWT of a and d SST of a. The colour bar represents the energy distribution
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associated with a healthier or more adaptive system 
[48, 49]. Comparison of FD values obtained for patients 
and controls at different lobes under various recording 
protocols are demonstrated in Fig. 2.

FD values for patients were higher under MAEC proto-
col in comparison with other protocols. The analysis was 
carried out on various lobes under EO, EC, MAEO and 
MAEC protocols. The cognitive decline in MAEO was 
higher than that in MAEC, and it was higher in EC than 
in EO condition. The maximum value of FD for cognitive 
task EC protocol suggested that the MAEC protocol was 
suitable for locating the differences of MCI–AD EEG [50]. 
The mental arithmetic task performed under EC con-
dition triggers cognitive activity. An increase in the FD 
values proportional to the task complexity is evident in 
comparison with the resting state [51]. An increase in the 
neuronal activity under resting state EO condition would 
result in higher complexity values for FD. A more  brain 
rhythmicity was observed for the  cognitive task in EO 
state at the early stages of AD patients. The largest val-
ues of FD occurred at the temporal location, followed by 
frontal and occipital with the FD value being the lowest 
in the parietal region (T > F > O > P) for patients (Fig.  2). 
EEG anomalies in dementia typically reflect disturbances 
in parietal lobe activities [52]. For controls, the cognitive 
decline of MAEO was higher than MAEC, whereas it was 
greater in EC than in EO condition in tandem with the 
observations found in MCI–AD patients.

CDR is a clinical dementia rating scale, in which val-
ues of one and less are considered for the analysis. Lower 
FD values were perceived in cases with CDR value of one 

compared with those of 0.5 at the resting and cognitive 
states.

The average FD values calculated for patients and con-
trols in both the right and left parts of the brain lobes 
under various recording protocols are shown in Table 1. 
FD values are higher for patients in all the lobes at the 
right hemisphere of the brain and lower in the left hemi-
sphere (Table 1a). The time series irregularity was higher 
in the right part of the brain, indicating the possibility of 
larger impairment in the left hemisphere. It points to the 
fact that the left part underwent faster cortical worsen-
ing than the right hemisphere in patients. FD values of 
left and right lobes of healthy controls at distinct record-
ing protocols are displayed in Table 1b. Higher FD values 
are observed for controls than for patients in various left/
right lobes of different protocols which are evident from 
Table  1. Higher FD values are observed for controls in 
comparison to MCI–AD owing to the higher brain com-
plexity for controls both at the left/right lobe locations 
under distinct protocols. FD values also revealed larger 
irregularity in the right hemisphere for healthy controls 
too. MCI–AD and normal controls confirmed higher FD 
values at the right lobes than the left with similar patterns 
of variation under all the recorded protocols. EEG signals 
of MCI–AD had almost identical characteristics with 
normal aging group because of the selected MCI–AD 
group was chosen for a CDR value less than or equal to 1.

Homologous areas inter‑hemispheric symmetry (HArS)
Analysis of region-specific alterations in healthy elderly 
and MCI–AD brain activity was carried out on four 
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Fig. 2  FD values of MCI–AD patients and healthy controls at different lobes under various recording protocols, the vertical bar represents the 
standard error, *p < 0.05
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different brain lobes of frontal, parietal, occipital and 
temporal under both resting and cognitive states. HArS 
calculations were based on FD values computed for the 
right and left-brain hemisphere of controls and patients. 
Zero value of HArS suggests symmetry and a positive 
or negative value for the index corresponds to the exist-
ence of asymmetry. Higher left FD asymmetry than right 
indicates a positive HArS, whereas a higher right FD 
asymmetry than the left specifies a negative HArS value. 
Table 2 mentions the values of HArS computed using FD 
for patients. HArS results of MCI–AD patients had larger 
right asymmetry than the left (Table 2). The hemispheri-
cal asymmetry was inevitable in every living being. The 
analysis demonstrated the left half of the brain of MCI–
AD was largely impaired than the right. A dominant right 
hemispherical asymmetry was seen both in resting and 
cognitive states for the controls and patients.

The gradual decrease of regional heterogeneity in 
hemispherical asymmetry was noted in healthy elderly 
and MCI–AD participants. Loss of asymmetry in vari-
ous brain regions may lead to dampening brain func-
tion coordination, forgetfulness and difficulty in learning 

tasks in healthy aging. Worsening in writing, visual pro-
cessing, planning distance, recognising faces, memory, 
as well as social and emotional activities, are some of the 
consequences of  asymmetry loss in patients. MCI–AD 
had distinct structural variation and cognitive degenera-
tion compared to healthy aging. Therefore, hemispheric 
asymmetry analysis using EEG signal should help in dif-
ferentiating MCI–AD with healthy controls. Negative 
values of HArS index represented a larger decline of 
complexity in the left hemisphere of the brain than the 
right. Progression of the disease amounting to asymme-
try reduction impairs the cognitive efficiency of the brain 
[41, 53–56]. Similar HArS patterns are identified for con-
trols and patients because of MCI–AD, being the very 
early stages of AD.

The asymmetry metric is the natural log transform of 
left to right FD ratio and corrects overall FD asymmetry. 
Natural log asymmetry metric suitably summarised the 
asymmetrical activities of the left and right halves of the 
brain hemisphere. The correction was performed by the 
comparison of natural log metric to HArS values. HArS 
was correlated linearly with a natural log difference score 

Table 1  FD values of  left and  right lobes for  (a) MCI–AD patients and  (b) healthy controls under  various recording 
protocols

* Two-tailed, p < 0.05

Protocols Frontal left/right Parietal left/right Occipital left/right Temporal left/right

FL* FR PL* PR* OL* OR* TL* TR

(a) MCI–AD patients

 EC 1.9102 ± 0.004 1.9226 ± 0.002 1.9107 ± 0.0 1.9205 ± 0.0 1.9121 ± 0.0 1.925 ± 0.0 1.9133 ± 0.005 1.9261 ± 0.0007

 EO 1.9137 ± 0.004 1.9278 ± 0.005 1.9115 ± 0.0 1.9208 ± 0.0 1.9137 ± 0.0 1.9209 ± 0.0 1.915 ± 0.006 1.9273 ± 0.0025

 MAEC 1.9167 ± 0.006 1.9295 ± 0.003 1.9167 ± 0.0 1.9195 ± 0.0 1.9148 ± 0.0 1.927 ± 0.0 1.9199 ± 0.010 1.9289 ± 0.0015

 MAEO 1.9131 ± 0.003 1.9294 ± 0.003 1.9111 ± 0.0 1.9206 ± 0.0 1.9113 ± 0.0 1.9261 ± 0.0 1.9116 ± 0.008 1.9224 ± 0.0014

Protocols Frontal left/right Parietal left/right Occipital left/right Temporal left/right

FL FR PL PR OL OR TL TR

(b) Healthy controls

 EC 1.9251 ± 0.002 1.9304 ± 0.0004 1.9246 ± 0.0 1.9271 ± 0.0 1.9261 ± 0.0 1.9306 ± 0.0 1.9233 ± 0.003 1.9264 ± 0.002

 EO 1.9257 ± 0.0019 1.93052 ± 0.0001 1.9250 ± 0.0 1.9273 ± 0.0 1.9265 ± 0.0 1.9308 ± 0.0 1.9235 ± 0.004 1.9277 ± 0.002

 MAEC 1.9247 ± 0.0032 1.9305 ± 0.0008 1.9251 ± 0.0 1.9275 ± 0.0 1.9277 ± 0.0 1.9308 ± 0.0 1.9237 ± 0.0038 1.9299 ± 0.003

 MAEO 1.9242 ± 0.0023 1.9295 ± 0.0007 1.9240 ± 0.0 1.9264 ± 0.0 1.9257 ± 0.0 1.9300 ± 0.0 1.9224 ± 0.003 1.9250 ± 0.003

Table 2  FD HArS values of patients

* Two-tailed, p < 0.05

Protocols Frontal* Parietal* Occipital* Temporal*

EC − 0.00324 ± 0.0045 − 0.00256 ± 0.0008 − 0.00336 ± 0.0004 − 0.00333 ± 0.0051

EO − 0.00367 ± 0.0061 − 0.00243 ± 0.00081 − 0.00188 ± 0.0004 − 0.0032 ± 0.0053

MAEC − 0.00333 ± 0.0072 − 0.00073 ± 0.0009 − 0.00318 ± 0.0004 − 0.00234 ± 0.009

MAEO − 0.00424 ± 0.0047 − 0.00248 ± 0.0006 − 0.00386 ± 0.0013 − 0.00282 ± 0.0059
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[57, 58]. Figure 3 represents the relationship of the asym-
metry metric and HArS of MCI–AD patients for EC and 
MAEC protocols.

Asymmetry metric score replicated differences between 
the asymmetrical activity of left and right hemispheres, 
whereas correlation reflects the similarity of asymmetry 
at each location. A linear relationship with the correlation 
between HArS and the metric score of one was observed 
for controls and patients for all recording protocols under 
resting and cognitive states. A higher score for asymmetry 
metric represents greater relative activity in the right hemi-
sphere for the frontal, temporal, occipital and parietal lobes.

Approximate entropy (ApEn)
ApEn is employed as a statistic of irregularity. The lower 
values of ApEn indicate regularity and higher values for 
irregularity. Comparison of ApEn values was performed 
at various lobes (F, P, O, and T) under distinct recording 
protocols (EC, MAEC, EO and MAEO) of controls and 
patients (Fig. 4). ApEn values were higher for controls in 
all the recording protocols under both resting and cogni-
tive task conditions. Lower values of ApEn were an indi-
cation of complexity decrease in the EEG signal acquired 
from MCI–AD patients. Higher brain complexity was 
displayed in a resting state than cognitive task condi-
tion for normal subjects. The highest ApEn values were 
detected at MAEO recording protocol for patients. The 
range of ApEn values was lower under EO and MAEC 
protocols from MAEO by 4–5%.

Higher values of ApEn, an indication of larger EEG 
complexity is observed in EO than in EC conditions, the 
results of which matches with the earlier studies [59–61]. 

The cognitive activities of the patients under MAEO 
were more irregular than MAEC condition, whereas 
EO showed a higher irregularity in comparison with EC 
state. Higher values of ApEn were observed for EO pro-
tocol both under resting state and under cognitive tasks 
in patients. The runs of a pattern of points under all 
intervals throughout the length of the signal remain simi-
lar for resting and cognitive task conditions during EC 
recording protocol.

The calculated values of ApEn were observed to be the 
highest for the temporal lobe and least for the frontal 
lobe during the resting states. Reduced ApEn values were 
observed for MCI–AD patients at the frontal lobe indi-
cating complexity reduction. The lowered ApEn values 
were closely associated with the decline in brain activity. 
Impairment in both executive and attention functions, 
associated with the frontal lobe, had been reported in 
past studies in MCI–AD subjects [62, 63]. The ApEn val-
ues of controls were highest at the EO protocol followed 
by EC and MAEC protocol. The highest values of ApEn 
for controls occurred at the temporal location followed 
by occipital, frontal and parietal lobe in EC, MAEC and 
MAEO protocols. The ApEn values of healthy controls 
were specific to a particular region and found to be least 
at the parietal lobe.

The results of the FD and ApEn measures unveiled the 
suitability of EEG signals for distinguishing  MCI–AD 
subjects from the healthy controls. The findings ensured 
that the complexity and irregularity of the EEG signal for 
MCI–AD patients are lowered in all the lobes under all 
the recording protocols. EEG analysis employing time 
domain measures also assist in distinguishing the patient 
group from healthy controls.

0.000 0.001 0.002 0.003 0.004

-0.008

-0.006

-0.004

-0.002

0.000

ln
(L
/R

)

HArS
0.000 0.001 0.002 0.003 0.004

-0.008

-0.006

-0.004

-0.002

0.000

ln
(L
/R

)

HArS

a b                                        

Fig. 3  Relationship of the asymmetry metric and HArS of MCI–AD patients for calculated values of FD at a EC protocol, b MAEC protocol
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Discussion
Time and time–frequency methods were employed for 
the EEG signal analysis of MCI–AD and healthy controls 
recorded under resting (EC and EO) and cognitive tasks 
(MAEC and MAEO). The noise elimination of EEG signal 
had been carried out using simultaneous low pass filter-
ing and total variation denoising (LPF/TVD) algorithm 
[64]. A high value for the SNR ratio validated the perfor-
mance of the denoising method adopted.

A precise time–frequency representation of MCI–
AD EEG signal was developed using Synchrosqueezing 
transform. SST enhances the TF resolution through the 
computation of reassigned instantaneous frequencies. 
The reassignment property of SST improves the readabil-
ity, which enables the facilitated spectral interpretation. 
Hence, highly localised TF technique of SST improves TF 
data of the time-varying signal. SST sharpens the time–
frequency plot by concentrating the energy towards 
instantaneous frequency curves. SST is a reassignment 
vector in the frequency direction with no time shift in the 
TF plane. The current study focuses on the significance of 
SST with respect to STFT and CWT, computed on wave-
let decomposed EEG signals, measured under both rest-
ing and cognitive states. The present study support the 
fact that the frequency representation of the EEG signal 
is distinguished highly by SST, with more distortion and 
smearing in representations of STFT and CWT [20]. The 
performance of CWT based SST provided better insight 
into the energy concentration of specific frequency bands 

by alleviating the blurring effect observed in STFT and 
CWT.

Six-level multi-resolution wavelet decomposition was 
carried out on the denoised signal to extract the fre-
quency bands of δ, θ, α, β and γ. In the current analysis, 
SST methodology was applied to EEG frequency bands of 
MCI–AD and healthy controls. Reassignment procedure 
of SST focuses the energy of the spectrogram towards the 
instantaneous frequency (IF) [20]. STFT and WT decom-
pose a signal into both time and frequency components. 
SST is the enhanced version of WT, integrating the com-
ponents of empirical mode decomposition, using TFR 
algorithm [44]. The reassignment property of SST sepa-
rates it from STFT and CWT and thereby provides TF 
localisation without time shifts. SST exemplifies a signal 
in TF plane instead of TS plane. The spreading of fre-
quency components was reduced in SST compared with 
those in STFT and CWT.

FD analysis is used to detect the complexity of the 
EEG signal [65]. A reduced brain activity complexity was 
observed for MCI–AD patients compared with healthy 
controls, in line with AD studies [34]. A reduction of FD 
values on cortical brain regions of MCI–AD was mainly 
observed in frontal, occipital and parietal areas. The 
reduced FD values during progression of Alzheimer’s 
reveal neural and cognitive discrepancy in the brain 
region [41]. No correlation was observed between FD 
and CDR scales of 0.5 and 1.0 for MCI–AD patients on 
both cognitive and resting states. Though, for cases with 
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CDR = 2, there is a result which contradicts our obser-
vation [32]. It is inferred from the current study that FD 
values were lower for CDR = 1 than for CDR = 0.5 both 
for resting and cognitive states. Reportedly, the disorder 
in cognition exists in brain aging, neurodegenerative dis-
eases and dementia [66]. Homologous inter-hemispheric 
asymmetry computed using the values of FD specified 
larger impairment in the left hemisphere of the brain in 
our study. Thompson et al. reported that in AD, the pro-
gression of cortical atrophy expedited in the left half of 
the brain than in the right part [67].

The current study also employed ApEn for the evalua-
tion of irregularity of EEG signals in MCI–AD and con-
trols. ApEn analysis under different protocols revealed 
that MCI–AD subjects had more regularity than controls 
in all the electrode locations. The result was consist-
ent with the previous nonlinear studies conducted for 
relaxed EC state [26, 28, 68]. The dynamic brain changes 
resulted in aberrations in the EEG signals of MCI–AD 
subjects. Neurotransmitter deficiencies, losses of func-
tional connectivity due to the death of neurons are some 
of the reasons responsible for such changes [11]. Larger 
values of ApEn for controls indicated new pattern gen-
eration in healthy controls. Deficiency of cortical activity 
in the cerebral cortex is due to the lack of active networks 
resulting in diminished ApEn values for AD patients [11]. 
The results suggested that there is no specific difference 
in the cognitive decline in MCI–AD under cognitive task 
compared with the resting state. The hypothesis sup-
ports parietal lobe impairment and asymmetric altera-
tions in EEG signal at the right and left hemispheres of 
the MCI–AD. The findings revealed that there is loss of 
EEG complexity in patients at the primary phases of AD 
compared with healthy controls. Consequently, abnormal 
EEG could be used as an indicator in the early diagnosis 
for AD.

Conclusion
In this paper, nonlinear methods of time–frequency and 
time-domain were employed to analyse EEG signals at 
the early stages of AD. EEG signal measurements were 
carried out under resting and cognitive states for MCI–
AD patients  and healthy controls. The nonlinear time–
frequency method of SST provided spectral EEG signals 
with higher precision in time and frequency. SST allevi-
ates the smearing of frequency bands and thus improves 
the readability of the spectrogram compared with those 
in STFT and CWT. The time domain measures of FD 
and ApEn were applied on MCI–AD and healthy EEG 
signals. Lower FD and ApEn values could be an indica-
tion of developing cognitive deterioration in the brain of 
MCI–AD patients. The time domain measures confirmed 

that EEG anomalies owing to dementia are reflected at 
the parietal lobe functions. HArS values computed from 
FD demonstrates a rightward hemisphere dominance. 
Reduction of asymmetry in the hemispheres is an indi-
cation of reduced interaction between the hemispheres. 
Asymmetry reduction leads to a decline in cognitive per-
formance in patients. Cognitive worsening and memory 
loss are an indication of the neuronal cell death in early 
AD. Changes in EEG time series are concomitant with 
dynamics of brain function. Hence, EEG signal is a poten-
tial biomarker for the diagnosis of AD at its prodromal 
stages.

Methods
Participants
A group control study ranges from 50 to 80 years involv-
ing mild cognitive impaired subjects with MCI–AD (8 
men and 7 women; age = 67.78 ± 6.10 years) and healthy 
controls (15 men and 12 women; age = 56.18 ± 4.78 years) 
were used for the analysis. Significant differences were 
observed for the age of patient group and controls 
( Fcrit = 34.98 , p < 0.0005). The disease severity was meas-
ured using the Clinical Dementia Rating scale (CDR). 
CDR for MCI–AD patients ranges from 0.5 to 1, with 
controls having a CDR value of 0. Controls considered 
for the analysis were subjects without any health issues. 
Mini-mental state examination (MMSE) and Adden-
brooke‘s cognitive examination-revised (ACE-R) were 
the two neuropsychological indices used for the study. 
MMSE [69], a simple method out of 30, to evaluate cog-
nition was adopted for the analysis. The patients had 
an MMSE score of 23.92 ± 4.15 and control group with 
29.37 ± 0.92. ACE [70], a score out of 100, denotes a 
larger value for the better cognitive function. The MCI–
AD patients who took part in this study had an ACE 
score of 63.85 ± 8.45 and controls with 93 ± 5.34 points. 
Healthy controls have an education level of 12.3 ± 3.5, 
and patients with 11.1 ± 3.3. The two groups are matched 
on educational level. Demographic details including soci-
oeconomic strata, occupation related information are 
collected. Personal proforma are collected for informa-
tion about the medical history. Participants with a history 
of any neurological/neurosurgical/psychiatric disorder 
are not included in the study forms the exclusion crite-
rion. Participants are screened on the basis of MMSE and 
ACE-R and the diagnosis of MCI are made based upon 
standard criteria.

EEG data acquisition from MCI–AD patients and healthy 
controls were conducted at Sree Chitra Tirunal Institute for 
Medical Sciences and Technology, Trivandrum, Kerala, 
India. Ethical committee sanction was given for this work. 
Written informed consent was obtained from both healthy 
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controls and caretakers of Alzheimer patients who partici-
pated in the current study.

EEG recording
EEG was recorded simultaneously from 32 channels EEG 
acquisition system (NicVue, Nicolet-Viking, USA) corre-
sponding to the International 10–20 System. The 23 chan-
nels located at frontal (Fp1, Fp2, F3, F4, F7, F8), parietal 
(P3, P4), occipital (O1, O2), temporal (T1, T2, T3, T4, T5, 
T6), C3, C4, Fz, Cz, Pz, A1 and A2 were utilized for the 
current analysis. Left and right earlobes (A1 and A2) were 
marked as reference electrodes. The sampling rate of the 
data recorded was 400 Hz.

EEG data was recorded for 5 min each from controls and 
patients under resting state and cognitive task condition. 
Resting EEG recordings were obtained under Eyes Open 
(EO) and Eyes Closed (EC) while Mental Arithmetic EO 
(MAEO) and Mental Arithmetic EC (MAEC) recordings 
were acquired for 5 min each under cognitive task condi-
tion respectively. Simple mental arithmetic exercises such 
as simple addition, subtraction, multiplication and divi-
sion are performed during eyes open (MAEO) and eyes 
closed (MAEC) conditions. The artifacts in the EEG sig-
nal acquired under both resting and cognitive task condi-
tions were removed using simultaneous low-pass filtering 
and total variation denoising (LPF/TVD). An improved 
signal-to-noise ratio on employing the denoising algorithm 
ensured the efficacy of the algorithm. Digitised EEG signals 
were analysed using MATLAB (R2017b) environment.

Time–frequency (TF) analysis
Time–frequency analysis helps in simultaneous representa-
tions of both the time and frequency content of the signal. 
TF methods are useful tools for the analysis of nonstation-
ary signals like EEG, for attaining frequency variation and 
energy distribution presented in the signal over time. TF 
methods are appropriate for the localisation of individual 
components presented in a multicomponent signal. Differ-
ent TF methods adopted in the paper are STFT, WT and 
SST.

Short‑time Fourier transform (STFT)
STFT slices the signal into small segments and applies Fou-
rier transform (FT) on each portion. Difficulty in the selec-
tion of optimal window length of segments which contain 
various features and TF trade-offs are the drawbacks of 
STFT [15].

where τ : time parameter, ω : frequency parameter, x(t) : 
signal to be analysed, e−jωt : FT Kernel (basis function), 
W (t − τ) : windowing function (Analysis window).

(1)STFTω
x (τ ,ω) =

∫

[x(t) ·W (t − τ )] · e−jωtdt

Continuous wavelet transform (CWT)
Wavelet transform (WT) uses a variable window size for 
TF analysis. The larger time window gives good low-fre-
quency resolution, and short time window provides good 
high-frequency resolution. The two types of WT avail-
able for the analysis are continuous wavelets transform 
(CWT), and discrete wavelets transform (DWT) [71]. 
CWT is represented as:

where a : scale parameter, b : translation parameter, 1√
a
 : 

normalization constant, s(t) : signal to be analyzed, 
Ws(a, b) : coefficients representing concentrated time–
frequency, ψ∗

(

t−b
a

)

 : mother wavelet.
DWT is determined by passing the signal through a series 

of high and low pass filters. DWT of the signal is given by:

where ylow(n) : approximation coefficients, yhigh(n) : detail 
coefficients, g : low-pass filter, h : high-pass filter, s[k] : sig-
nal to be analysed.

CWT  splits continuous time signal into  wavelets, 
whereas DWT is the discretised version of CWT. The 
present work used CWT as a continuous-time signal, 
which is considered for the analysis.

Synchrosqueezing transform (SST)
SST is an invertible and adaptive transform that improves 
the quality of TFR by condensing it along the frequency 
axis. SST method is robust to noise and TF plot repre-
sents frequency information corresponding to the spe-
cific frequency bands. SST concentrates energy content to 
a small spectral band and is suitable for TF localisation. 
Mainly two types of SST methods are available: STFT-
based SST and Wavelet-based SST. The present study 
employs wavelet-based SST as the reconstruction error 
in the signal gets a globally constant value. It also enables 
sharper spectral representation of the signal at high fre-
quencies [72]. The detailed steps for SST calculation are 
outlined in Herrera et al. [44]. SST method uses mapping 
of time-scale (TS) plane to time–frequency (TF) plane.

where a, b : discrete values, �ak = ak−1 − ak : scaling 
step, SST is decided at the centres of ωl , with a frequency 

(2)Ws(a, b) =
1

√
|a|

∫

s(t)ψ∗
(

t − b

a

)

dt

(3)ylow(n) =
∑

s[k]g[2n− k]

(4)yhigh(n) =
∑

s[k]h[2n− k]

(5)

SST (ωl , b) =
1

�ω

∑

ak:|ω(ak ,b)−ωl|≤�ω/2

Ws(ak , b)a
−3/2�ak
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range: ωl −�ω
/

2, ωl +�ω
/

2 , having �ω = ωl − ωl−1, 
Ws(ak , b) : coefficients representing concentrated time–
frequency, ω(ak , b) : instantaneous frequency.

The higher resolution and exact reconstruction of signal 
components in frequency bands of interest discriminate 
SST from STFT and CWT. SST is found to be producing 
highly precise results in the current spectral analysis.

Fractal dimension (FD)
FD is one of the applications of chaos theory measur-
ing the complexity of the neuronal cell profiles [73]. FD 
is calculated as per the algorithm proposed by Higuchi 
et al. [74]. Increased FD value indicates higher irregular-
ity of the series.

Let the time series be: X = x [1], x [2],…, x [N]. Form ‘k’ 
new time series,

The length of the new series is given by,

where m = 1, 2, ..., k; k = 1, 2, ..., kmax.
Mean length L(k) is given by:

FD is the slope of ln[L(k)] over ln(1/k) . The selection 
of the appropriate value for kmax is performed by plotting 
FD values against the range of kmax. The point where FD 
plateaus observed is taken as the saturation point, and 
the value is selected as kmax [75]. The value of kmax chosen 
for the present study is 6.

Homologous areas inter‑hemispheric symmetry (HArS)
The symmetry in FD of homologous areas of brain 
hemisphere is evaluated for both MCI–AD and healthy 
subjects in addition to the nonlinear measure FD. The 
study on FD inter-hemispheric asymmetry is carried 
out to explore whether the nonlinear complexity meas-
ure FD could reveal asymmetry underlying homologous 

(6)
X
m

k
=

{

x[m], x[m+ k], x[m+ 2k], . . . ,

x

[

m+ int

(

N −m

k

)

× k

]}

(7)

L(m, k) =
1

k









int
�

N−m
k

�

�

i=1

�

�x[m+ ik]− x[m+ (i − 1)× k]
�

�









×





N − 1
�

int
�

N−m
k

�

× k
�





(8)L(k) =
1

k

(

k
∑

m=1

L(m, k)

)

regions of the brain under the resting and cognitive task 
states. The homologous areas of brain hemispheres: 
Fp1–Fp2, F3–F4, P3–P4, O1–O2, T1–T2, F7–F8, T3–
T4 and T5–T6 pairs are used for the analysis. Following 
the work of Smits et  al. [41], the formula used for the 
calculation of FD HArS is chosen.

Asymmetry metric
Computation of asymmetry metric is convenient 
for assessing relations between EEG asymmetry and 
behavior. The asymmetry metric score is a unidimen-
sional scale, which represents the asymmetry activity 
of both the left and right hemispheres. The natural log 
asymmetry metric is the difference between natural 
log-transformed scores. The subtraction of two natural-
log transformed scores is equal to natural log-trans-
form of the ratio of the scores. Log difference scores 
are developed to provide a single metric of asymmetry. 
Difference score conveniently summarises the relative 
activity at homologous left and right electrode posi-
tions. Asymmetry metric is given by [57, 58]:

‘L ’ for left electrode  locations and ‘ R ’ for right elec-
trode positions.

Approximate entropy (ApEn)
ApEn is a measure of complexity and regularity of a 
system. Lower ApEn is the quantification of predict-
ability, whereas higher ApEn indicates unpredictability 
of a time series [76]. ApEn established by Pincus is used 
for short data series [77, 78]. The algorithm of ApEn is 
performed as per the reports of Pincus et al. [79]. Let N 
point time series be x (1), x (2),…, x (N) having embed-
ding space Rm , ApEn is defined as:

where Cm
i (r) = 1

(N−m+1)

∑(N−m+1)
j=1

(

r − xi − xj
)

 , where 
N is the time series length, m is the comparing length 
of the sequences and r is the tolerance level [80]. The 
‘m’, and ‘r’ assigned for the present study are 2 and 
0.2  *  standard deviation of the series, respectively [79]. 
‘ xi − xj ’ is the distance between the vectors.

(9)FDHArS =
FDleft channel − FDright channel

FDleft channel + FDright channel

(10)ln (L)− ln (R) = ln(L/R)

(11)

ApEn(m, r,N ) =
1

(N −m+ 1)

(N−m+1)
∑

i=1

logCm
i (r)

−
1

(N −m)

(N−m)
∑

i=1

logCm+1
i (r)
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Statistical analysis
The average values of FD calculated over all the EEG 
electrode locations are comparatively lower in MCI–AD 
patients than in the healthy control group. Significant 
group differences in FD values are observed using Two-
way ANOVA among the four different protocols of EO, 
EC, MAEO and MAEC in various lobes (Fcrit = 3.86; 
p < 0.005) of patient and control group. Bonferroni cor-
rection gave a p-value of 0.00833. No statistically sig-
nificant difference was observed in the values of HArS in 
both patient and control group among the recording pro-
tocols (p > 0.05). The significance of HArS values in the 
lobes of frontal, parietal, occipital and temporal regions 
in both controls and patients indicated the existence of 
asymmetry between the left and right hemispheres of 
the brain (Fcrit = 5.98; p < 0.0002). The statistical signifi-
cance of the HArS with asymmetry metric is confirmed 
using One-Way ANOVA (Fcrit = 4.493998; p < 0.0001). A 
significant difference in ApEn values found among the 
recording protocols of controls and patients showed the 
complexity difference of MCI–AD and healthy controls 
(Fcrit = 4.49; p < 0.0003). Bonferroni corrected p-value is 
0.008.
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