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Abstract 

Background Rodent social behavior is a commonly used preclinical model to interrogate the mechanisms underpin-
ning various human neurological conditions. To investigate the interplay between neural systems and social behav-
iors, neuroscientists need a precise quantitative measure for multi-rodent tracking and behavior assessment in labora-
tory settings. However, identifying individual differences across multiple rodents due to visual occlusion precludes the 
generation of stable individual tracks across time.

Methods To overcome the present limitations of multi-rodent tracking, we have developed an Ear Detection and 
Dual Siamese Network for Multiple Rodent Tracking (EDDSN-MRT). The aim of this study is to validate the EDDSN-
MRT system in mice using a publicly available dataset and compare it with several current state-of-the-art methods 
for behavioral assessment. To demonstrate its application and effectiveness in the assessment of multi-rodent social 
behavior, we implemented an intermittent fasting intervention experiment on 4 groups of mice (each group is with 
different ages and fasting status and contains 8 individuals). We used the EDDSN-MRT system to track multiple mice 
simultaneously and for the identification and analysis of individual differences in rodent social behavior and com-
pared our proposed method with Toxtrac and idtracker.ai.

Results The locomotion behavior of up to 4 mice can be tracked simultaneously using the EDDSN-MRT system. 
Unexpectedly, we found intermittent fasting led to a decrease in the spatial distribution of the mice, contrasting with 
previous findings. Furthermore, we show that the EDDSN-MRT system can be used to analyze the social behavior 
of multiple mice of different ages and fasting status and provide data on locomotion behavior across multiple mice 
simultaneously.

Conclusions Compared with several state-of-the-art methods, the EDDSN-MRT system provided better tracking 
performance according to Multiple Object Tracking Accuracy (MOTA) and ID Correct Rate (ICR). External experimen-
tal validation suggests that the EDDSN-MRT system has sensitivity to distinguish the behaviors of mice on different 
intermittent fasting regimens. The EDDSN-MRT system code is freely available here: https:// github. com/ flies sen/ 
EDDSN- MRT.
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Background
Rodents are highly social mammals and are typically 
group-housed. Therefore, as expected, social interaction 
models based on rodent tracking are valuable experimen-
tal tools for investigating the mechanisms underpinning 
disease states alongside genetics, epigenetics, and phar-
macotherapy for assessment of risk, vulnerability and 
the development of improved treatment strategies [1–7]. 
Conventional rodent tracking paradigms are usually 
based on video recordings of behaving rodents captured 
by a single overhead optical camera. As such, the experi-
menter must distinguish video frames by the presence 
or absence of visual occlusion and then track rodents in 
occlusion and non-occlusion frames respectively. There-
fore, the main challenge of multi-rodent tracking is how 
to correctly identify individual rodents after they touch, 
cross, or are occluded by one another (i.e., the occlusion 
condition).

Previous studies have addressed the occlusion inter-
ference problem with multi-rodent tracking primarily 
from three perspectives. First, is the use of social behav-
ior models where physical contact between individuals is 
prevented, such as the three-chamber social test [8–10]. 
In these kinds of models, individuals are isolated either 
in individual cages or separated by Perspex walls, thus 
preventing conspecific interactions. However, because 
moving between areas is limited, such approaches do 
not permit a comprehensive investigation of the behavio-
ral trajectories of spontaneous and freely behaving mice 
[16–19]. Second, is the use of bio-loggers (e.g., labels or 
tags) or special devices, such as radio frequency identi-
fication (RFID) or the use of multiple cameras during 
data recording [11–13]. With the aid of special equip-
ment, these approaches can achieve a high level of track-
ing accuracy. However, attaching or implanting sensors 
into rodents has many disadvantages, such as the high 
cost of such devices and complex surgical requirements 
that could be considered an additional intervention. In 
addition, wearable devices and, in particular, implanted 
devices, may negatively impact their normal behavio-
ral trajectories. For example, a transmitter implanted 
into the skull may necessitate long post-surgical recov-
ery times, cause reduced range of motion, and loss of 
appetite leading to weight loss [20]. Intraperitoneally 
implanted transmitters have been reported to decrease 

spontaneous behaviors, such as running wheel activ-
ity [21, 22]. Wearable tags may negatively impact vision 
and olfaction, with unwanted effects on the behavior of 
conspecifics [23]. Third, is the use of end-to-end methods 
based on monocular videos with single-view depth esti-
mation. This state-of-the-art method of Multiple Object 
Tracking (MOT) has been widely implemented in the 
tracking of pedestrians [14], vehicles [15], and animals in 
complex environments [16, 17, 20]. However, the inabil-
ity to label recorded individuals, and the similarity across 
individuals’ appearances and a wide range of shapes, 
has led to undesirable methods to obtain accuracy, such 
as manual calibration and tracking over long time even 
when recordings are made in laboratory open field tests 
(OFT) with featureless, circular backgrounds.

To overcome the limitations of current methodologies, 
the aim of this study is to develop a behavioral recording 
system based on Ear Detection and Dual-Siamese Net-
work for Multiple Rodent Tracking (EDDSN-MRT) in 
laboratory environments. We propose that the EDDSN-
MRT system will address the aforementioned challenges 
in the tracking of occluded frames. We will validate our 
EDDSN-MRT system using a publicly available dataset 
on behaving mice and compare our results with a selec-
tion of state-of-the-art methods [24, 25] to determine 
whether our system can complete tracking operation in 
occlusion fragments and perform comparably, if not bet-
ter, than those in current use. In addition, we will vali-
date our system using an additional dataset to determine 
whether the EDDSN-MRT system can perform behavior 
analysis, including characterization of locomotion and 
movement phenotyping, and group-level location distri-
bution profiling.

Results
Results for ear detection network training
We first evaluated our ear detection network (EDN) on 
Dataset A and compared these results with several state-
of-the-art object detection methods (Table 1). Dataset A 
contained a freely behaving mouse in the open field test 
(OFT) which was determined to be suitable for training 
and testing ear detection.

We found that our EDN increased mAPat 0.5:0.9 
(mean average precision at Intersection over Union 
which is abbreviated as IoU, is from 0.5 to 0.9) by 12.03% 

Table 1 Comparison of performance for our ear detection network on dataset A

EDN, ear detection network; mAP, mean average precision.

*means P < 0.05

Benchmark Epoch Resolution Our EDN(P) Yolov5 % Yolov3 % Efficient Det %

mAP at 0.5 50 1280*720 97.07% (0.0918) 96.15 93.22 95.41

mAP at 0.5:0.9 50 1280*720 64.32%* (0.0018) 59.76 45.13 52.29
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wcompared with a well-known object detection model 
proposed in [27] (called “Efficient Det”) (52.29%), show-
ing the effectiveness of data augmentation and adaptive 
anchor box functions. Due to the extreme size of sub-
jects in Dataset A (about 5 to 8 pixels each), these two 
functions exerted a greater impact on performance in 
this dataset compared to the public dataset. However, 
the difference was smaller but significant in mAP at 0.5 
(mean average precision at IoU is 0.5, 97.07% vs 95.41%, 
P = 0.0038), suggesting the metric index of the original 
network was already too high to be obviously improved.

When we compared the results of the object detection 
model YOLOv5 [28] and the EDN presented in this study, 
we found that our EDN had a relatively higher mAP at 0.5 
(97.07% vs 96.15%, P = 0.0918) and significantly higher 
mAP at 0.5:0.9 (64.32% vs 59.76%, P = 0.0018) compared 
with YOLOv5. As mentioned above, the small difference 
on mAP at 0.5 may be due to the fact that the perfor-
mance of the original framework is already very high and 
therefore it is hard to outperform. Compared to the sec-
ond best-performing detection model (Yolov5), the EDN 
improved mAP at 0.5:0.9 by about 4%.It indicates that the 
EDN with our new designed Neck and Head modules 
achieves a better ear object detection performance.

Results for multi-rodent tracking
At the core of the tracker is a biometric feature (ear) 
based algorithm which provides immense flexibil-
ity to track multiple mice. Examples of tracking videos 
obtained using our proposed methods are available to 
view in Supplementary Material (Additional file 1: Movie 
S1, Additional file 2: Movie S2).

As shown in Table  2, we evaluated the EDDSN-MRT 
system on Dataset B. This dataset is a public dataset con-
taining 6 video clips [24]. We have numbered the videos 
B1 to B6. Both B1 and B2 videos contain 2 individuals. 
The total number of frames in B1 and B2 are 16000 and 
36468, respectively. It shows that the missing IDs of the 
three methods (Toxtrac:idtracker.ai:EDDSN-MRT) are 
8730:0:0 and 32441:0:0 (proportional figures on B1 and 
B2). But the ID drifting is 0:349:135 and 0:1101:730. 
Importantly, the results of idtracker.ai and EDDSN-MRT 
show that the number of missing IDs is zero. For the 
results of Toxtrac, the Drifting ID is zero. Numerically 
speaking, the detection performance of idtracker.ai and 
EDDSN-MRT should be better. However, due to the poor 
detection performance of Toxtrac, many IDs were lost, 
therefore the problem of ID drift is removed, i.e., since 
the ID cannot be detected, there is no tracking opera-
tion. The MOTAs (Multiple Object Tracking Accuracy) 
results were 72.6%: 97.8%: 99.1% and 55.4%:97.0%:98.0%. 
The ICRs (ID Correct Rate) were 67.1%:98.1%:99.5% 
and 38.4%:96.9%:99.0%. As such, regardless of whether 

MOTA or ICR was used as the comprehensive evaluation 
index, it was determined that idtracker.ai and EDDSN-
MRT perform well, and EDDSN-MRT is comparatively 
better than all those tested (all P < 0.05). The perfor-
mance of Toxtrac was far worse than EDDSN-MRT and 
idtracker.ai.

The duration and frame numbers of videos B3 and B4 
were very close, therefore they are combined for dis-
cussion. Unlike the results of B1 and B2, the number of 
Missing IDs was not zero for the idtrackerai’s results of 
B3 and B4. Therefore, these results are made with unde-
tected IDs in both videos, and the number of errors due 
to ID switching increased dramatically, greatly exceeding 
the number of errors due to ID drifting. This also indi-
cates that idtracker.ai has degraded performance on these 
two videos. Compared with the issue of a large increase 
in ID missing in the output of idtrakcer.ai, the number of 
Missing IDs in the result of EDDSN-MRT was still zero. 
This indicates that the performance of EDDSN has not 
declined while the difficulty of tracking individuals in 
the video increasing, demonstrating the superior per-
formance of the EDDSN-MRT system. The performance 
on B3 and B4 of Toxtrac was similar to that on B1 and 
B2 inasmuch as a large number of Missing IDs occurred, 
demonstrating poor performance in object detection. 
The MOTA and ICR indicators of the three methods on 
B3 and B4 were also similar to those on B1 and B2, with 
EDDSN-MRT getting the highest score, idtrackerai sec-
ond, and Toxtrac the worst.

Video B5 and B6 are different from the previous videos 
in that they contain 4 mice in each. The idtrackerai and 
EDDSN-MRT were run on these two videos for compari-
sons. Due to the occlusion caused by manual operation 
for a period in B6, it was cropped into two segments for 
the EDDSN-MRT run. Toxtrac could not be run on B6, 
resulting in missing data for these two videos (Table 2).

As the results in Table  2 demonstrate, our EDDSN-
MRT method consistently generates output with no 
missing IDs, sporadic ID switching and ID drift. This 
suggests that the performance of our method has not 
degraded in this kind of video, where more subjects are 
present, and the video duration time is longer. By com-
parison, the performance of Toxtrac and idtracker.ai 
show greater degradation. It is worth mentioning that 
the number of ID drift errors in the results of idtracker.ai 
have been reduced to 0 at this time (similar to the results 
of Toxtrac). However, there are still a lot of ID drift errors 
in EDDSN-MRT. As in the previous analysis, the num-
ber of ID drift errors dropped to 0 does not mean bet-
ter tracking performance. Rather, because the detection 
performance is so poor, most video frames do not even 
enter the stage of ID tracking. If we observe the two-eval-
uation metrics from a global perspective, we will find that 
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MOTA is insensitive to ID switching errors. The fact that 
only a few ID switches occur but the mice hold the wrong 
ID for a long period of time does not significantly reduce 
the MOTA assessment.

We repeated the above assessment on occlusion 
frames within Dataset B to verify the robustness of our 
method where subjects are occluded. We compared the 
tracking performance of all three methods in occlusion 
frames of the videos used (Table 3). The results show that 
EDDSN-MRT performs significantly better than Toxtrac 
and idtracker.ai in terms of ICR and MOTA in occluded 
frames (all P < 0.001).

Ablation study for Video B1
To verify the effectiveness of each component in EDDSN-
MRT, we designed an ablation study for Video B1. The 
first component of the ablation study was designed to 
demonstrate the effectiveness of ear detection-based 
methods (EDB) using tracking with traditional torso 
detection-based methods (TDB) (Table 4).

The results indicate that TBD + IEDN + DSN used the 
rodent torso as the target to implement object detec-
tion (Torso Based method, TDB) and perform tracking 
operations, which performed well in terms of correct IDs 
(86.77%). However, using the ears as targets improved 
object detection and correct IDs (99.58%), and performed 
significantly better than TBD (P < 0.0001).

The second component of the ablation study was to 
demonstrate the effectiveness of the improved ear detec-
tion network (IEDN), which uses ear detection with the 
original PANet (EDN). The second and fourth row of 
Table  4 shows that improved PANet can significantly 
improve ICR from 98.2% to 99.58% (P < 0.0001). Com-
bined with the data shown in Table  2, it is clear that 
the object detection framework using enhanced PANet 
has a greater ability to locate targets (improved mAP at 
0.5:0.9 from 58.58% to 64.32%, P < 0.0001), making this 
method suitable for variable environments. These results 
also indicated that the IEDN is effective for both rodent 
detection and tracking.

The dual-Siamese network framework used in this 
study has two independent Siamese networks: one is 
used to process image information of rodent subjects, 
and the other one is used to preserve spatial informa-
tion. To show the effectiveness of the dual-Siamese net-
work, we compared its performance with the traditional 
Single-Siamese network (SSN), which only processes 
images to validate the effectiveness of DSN. The ICR 
of DSN is 32.17% higher than the one of SSN (Table  4, 
P < 0.0001). The reason may be that the area of the mouse 
ear is very small—even in 1920 × 1080 resolution, it is 
still only 30 × 30 pixels in size. Furthermore, it is difficult 
to solely use image features for tracking without using 

spatial information for constraints. These factors validate 
the necessity of DSN and also show how the presence or 
absence of spatial information can have a big impact on 
the performance of the entire tracking framework.

Mouse experiment validation
Results of velocity
We monitored the movement of 32 subjects and obtained 
32 tracking trajectories, the average velocities of each 
subject, and the velocities of each subject per 5-min time 
block (the video is 40 min in total). Compared with the 
single-session experiment, the group analysis reveals 
diverse locomotion characteristics. It has been sug-
gested that as individuals age, damaged mitochondria 
produce less adenosine triphosphate (ATP) and more 
reactive oxygen species (ROS) accumulate, resulting in 
depression-like symptoms and in turn a weakening of 
locomotion ability [29, 30]. This was also observed in the 
results of this experiment (Fig. 1), where the older mice 
(aged 18 months) demonstrate a lower average velocity in 
both the AL (ad libitum feeding) and the IF (intermittent 
fasting) groups (both P < 0.05). Compared with the older 
mice, the younger mice (aged 3  months) with the same 
feeding schedule had the greater frequency of ambula-
tion. According to the previous research [31], an IF inter-
vention may alleviate depressive symptoms, which could 
improve locomotor performance and range of motion of 
monkeys and rodents.

We recorded the average speed of mice of each group 
over 40  min (2400 data per group) and performed Wil-
coxon rank sum test on the speed data of two groups of 
mice in the same age. There were significant differences 
in velocity between IF and AL mice in both young and 
old groups (both P < 0.001). And IF mice had signifi-
cantly higher average velocities compared with AL mice 
in young (6.08 vs. 5.04 cm/sec) and old (3.32 vs. 2.54 cm/
sec) groups, consistent with previous findings [31]. In 
order to clarify in which time period the difference in 
velocity primarily occurred, we performed the Wilcoxon 
Rank Sum Test on both age groups within the 40-min 
time period in 5-min units. We found that significant dif-
ferences in velocity were concentrated in the 21-25 min 
period (P < 0.05 in both age groups) (Table  5). This pat-
tern was observed in both young and old age groups. 
Furthermore, we observed that IF mice were more active 
than the average level of activity during this period 
(Fig. 1a, b), which was not found in the AL mice.

Spatial distribution of mice and time spent in a specific 
location
The AL mice in the 18-month age group were walked fur-
ther and were more widely distributed within their envi-
ronment (Fig. 2A–D). By contrast, mice in the IF group 
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were more likely to cluster together. This phenomenon 
was most observed in the older, 18-month-old mice. To 
quantify this, we calculated the two-dimensional (2D) 
standard deviation distribution coordinates of these 
mice. The standard deviation in 2D Euclidean space is the 
extension form of the one in 1D space and can be calcu-
lated as follows (Eq. 1):

However, mice are distributed within a 2D matrix with 
two variables, x (horizontal coordinate) and y (vertical 
coordinate). Therefore, to extend Eq. 1 to a 2D matrix, it 
is written as follows (Eq. 2):

The result shows that in the young mice group, the 
standard deviation of the AL and IF mice is 20.62  cm 
vs. 19.05  cm, respectively. In the old mice group, the 
standard deviation of the AL and IF mice is 18.59 cm vs. 
15.82  cm, respectively. These results demonstrate that 
in both age groups, the AL mice have a larger spatial 
distribution.

In order to reduce the error caused by the difference 
in areas of activity in individual mice versus the overall 
activity area of the group, we analyzed the activity area 
of every mouse separately. Since the video resolution is 
1280 × 960, we divided the main region of the open field 
(from 320 to 960 on the horizontal axis, and 240 to 720 
on the vertical axis) into 12 regions. Each region was 
160 × 160 in size and numbered 1–12 (Fig. 3a) and his-
tograms were generated for all groups (i.e., young vs. old 
mice, and AF vs. IF mice) (Fig. 3b). Finally, we plotted the 
histograms for each individual mouse to represent their 
location within the open field test and the proportion of 

(1)σ =

√

∑n
i=1

(xi − x)2

n

(2)σ =

√

∑n
i=1

(xi − x)2 +
(

yi − y
)2

n

time each mouse spent within the twelve described loca-
tions (Fig.  4). Although significant differences were not 
found (Wilcoxon Rank Sum Test), a trend was observed 
suggesting that the IF mice preferred to stay in fewer 
areas compared to the AL mice, and the space within 
which IF mice were distributed was far smaller than the 
AL mice. This finding was consistent across both individ-
uals and groups.

Discussion
This study presents a novel approach for ear detec-
tion, the EDDSN-MRT system, which avoids occlusion 
interference in multiple object detection analyses. This 
approach makes multiple rodent tracking based on object 
detection accessible and is an improvement on whole-
body detection which is vulnerable to occlusion. To adapt 
the EDDSN-MRT system for detecting ears of small sizes, 
we improved the existing PANet structure to obtain more 
detailed features from low-level layers. In the conven-
tional architecture of object detection networks, PANet 
is an independent component for feature extraction. 
Therefore, this improvement could be applied to most 
current ODNs similar to Yolo. Furthermore, it is feasible 
that the EDDSN-MRT system would be compatible and 
adaptable to a new ODN with better performance in the 
future. Since spatial and image information is extracted 
by an ODN, we used a dual-Siamese-network to measure 
the similarity between images of a pair of ears and spatial 
information in adjacent frames to assign identification to 
individual mice.

Comprehensive and unbiased locomotion phenotyp-
ing is an emerging and powerful approach for assess-
ing abnormal social behaviors in animal models of 
mood and depressive disorders [29–31]. In this study, 
we validated the application of the EDDSN-MRT sys-
tem in the monitoring of social behavior of intermittent 
fasting and ad  libitum feeding mice of different ages. 
Interestingly, we found that mice with an intermittent 
fasting intervention were significantly more active in 
spontaneous movement compared to the ad  libitum 
feeding mice. This difference was most obvious in the 
20–25-min timeframe (Table 5, both P = 0.0078). Previ-
ous studies have suggested that an intermittent fasting 
intervention could modulate mood and social behaviors 
in rodent models, relieving symptoms of depression and 
anxiety in mice [34–36]. This relief of symptoms would 
be evinced by an increase in spontaneous locomotion 
and a larger dwelling distribution of mice. However, 
the results of the open field test presented here showed 
the opposite findings. Compared with the ad  libitum 
feeding mice, the mice with the IF intervention had a 
smaller dwelling range. This could be interpreted as a 
sign of stable or increasingly worse depressive and/or 

Table 4 Results of the ablation study to verify the effectiveness 
of each EDDSN-MRT component

1 The P value is obtained by comparing the ICR of each other method and the 
EDB + IEDN + DSN method

EBD, Ear Based Detection method; EDN, Ear Detection Network(original); 
DSN,Dual-Siamese Network; ICR,ID Correct Rate; IEDN,Improved Ear Detection 
Network; TBD,Torso Based Detection method; SSN, Single-Siamese Network

Method ICR ID 1P value

TBD + IEDN + DSN 86.77% 16,000 P < 0.0001

EBD + EDN + DSN 98.20% 16,000 P < 0.0001

EBD + IEDN + SSN 67.40% 16,000 P < 0.0001

EBD + IEDN + DSN 99.58% 
 (P < 0.0001)

16,000 –
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(a) Average velocity of the 3-month group

(b) Average velocity of the 18-month group
Fig. 1 Monitoring of individual and group locomotion characteristics—Assessment of velocity. a Average velocity of the 3-month group (n = 8) for 
both intermittent fasting (orange bars) and ad libitum feeding groups (blue bars), and b average velocity of the 18-month group (n = 8) for both 
intermittent fasting (orange bars) and ad libitum feeding groups (blue bars). All data are presented in 5-min time blocks. Bars indicate group-level 
averages, error bars indicate standard deviation, and individual dots represent individual subjects (mice)
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anxiety symptoms. However, it is well-known that fast-
ing induces a lower body temperature [37–44]. This 
likely results in reduced physical agility and the desire 
to maintain body temperature by clustering, leading to 
a smaller range of locomotion. Therefore, intermittent 

fasting not only impacts on the mood of mice, but also 
on their physiological functioning.

Lastly, we would like to discuss the limitations of our 
proposed system. Mouse (or rodent) ears are a type of 
biometrical characteristic (BMC), but the BMC tracking 

Table 5 Wilcoxon Rank Sum Test results on the velocity of intermittent and ad libitum feeding mice in young and old age groups 
across 5-min units of time

Time (min) 1–5 6–10 11–15 16–20 21–25 26–30 31–35 36–40

3-month 0.0391 0.0781 0.2500 0.1484 0.0078 0.4609 0.1484 0.0547

18-month 0.6406 0.5469 0.7422 0.3828 0.0078 0.1484 0.1484 0.6406

(a)Distribu�on of 3-month old AL group (b) Distribu�on of 3-month old IF group

(c)Distribu�on of 18-month old AL group   (d) Distribu�on of 18-month old IF group
Fig. 2 The spatial distribution of mice (n = 8 per graph) and time spent in a given region. Histograms indicating spatial location and time spent in 
the location for all mice in each of the feeding regimens and age groups. Graph A shows the distribution of the 3-month-old AL group, B shows the 
distribution of the 3-month old IF group, C shows the distribution of the 18 month old AL group, and D shows the distribution of the 18-month old 
IF group. Each histogram was constructed by computing the percentage of time spent in a given pixel. Data were smoothed and presented in log 
scale
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performance heavily depends on the ODN designed for 
the specific feature. However, in some cases using ears 
for rodent tracking may be unreliable because of various 
problems such as not all rodents have such distinctive 

ears, and some types of rats (e.g., those with white fur) 
show very slight differences between the fur colour and 
the ear colour, In this case, it is difficult to identify the 
ears well, thus, we would need to select a new BMC for 

(a) Open Field Test area division. 1-12 are the order of each area.

(b) Histogram of each group
Fig. 3 Representative photo of mice in the open field test and histograms of each group’s distribution and time spent in each location within the 
open field test. A The open field was divided into 12 regions for analysis, and B histograms were created to show the spatial distribution of mice and 
time spent in each location. OFT, open field test
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tracking. As a next step, we are considering using gen-
erative adversarial network or semantic image segmenta-
tion to generate visible BMC marks for rodent subjects 
to enhance the performance of the ODN. Solving these 
problems will extend the applicability of our frame-
work to the benefit of the animal behavioral research 
community.

Conclusion
The EDDSN-MRT is an automated pipeline frame-
work for multiple rodent tracking. The system is robust 
to solve the occlusion problem in multiple individual 

tracking via tracking rodent ears as opposed to the entire 
rodent’s body. EDDSN-MRT can greatly improve the 
study of rodent movement and behavior by reducing the 
video processing time, avoiding observer bias, and allow-
ing transparent, reproducible workflows. Experimen-
tal results show that when compared with the current 
approaches, our proposed EDDSN-MRT achieves better 
performance in identification assignment for tracking 
individual mice. It also helped us to observe unexplained 
effects of intermittent fasting on rodent behavior in the 
laboratory.

(a) The distribu�on of individual young (3-month-old) intermi�ent fas�ng mice

(b) The distribu�on of individual young (3-month-old) ad libitum feeding mice
Fig. 4 Histograms showing each individual’s spatial distribution and proportion of time (%) spent in each of the twelve locations within the open 
field test
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Method
In the following sections, we demonstrate several advan-
tages of the EDDSN-MRT system for tracking multiple 
rodents compared with several existing state-of-the-art 
animal tracking object detection methods using multi-
rodent behavior datasets.

Experimental procedures
We first divided frames into occlusion frames and non-
occlusion frames via a segmentation process, followed 

by implementation of tracking operations (see Fig.  5 
for the pipeline of the proposed EDDSN-MRT system). 
Because of the occlusion of individuals, some blobs in 
occlusion fragments could contain multiple individuals 
in space. As such, it was not possible to assign identifi-
cation directly in the same manner as that in non-occlu-
sion frames. To overcome this, the following three steps 
were implemented for the tracking operation in occlu-
sion frames. The first step was ear labeling. Before track-
ing in occlusion frames, we first selected rodent ears as 

(c) The distribu�on of individual old (18-month-old) intermi�ent fas�ng mice

(d) The distribu�on of individual old (18-month-old) ad libitum feeding mice
Fig. 4 continued
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the key points for tracking since they are least likely to 
be occluded by individuals touching or crossing. The 
ear images, as opposed to the whole body, were used as 
machine learning input in order to train an ear detec-
tion network (EDN) based on Path Aggregation Network 
(PANet) [26] to locate and identify the ears of individual 
rodents. This step enabled the extraction of the ears’ 
(and individuals’) position in space and its image char-
acteristics. In addition, we utilized a dual-Siamese net-
work for spatial information and image characteristics 

of the detected ears as additional input to calculate the 
similarity between two frames that were used to assign 
identification of each rodent. Within the EDN, similarity 
calculating and ID assigning in occlusion fragments were 
performed. We then tested the EDDSN-MRT system 
using a publicly available dataset on behaving mice. We 
compared the results of the EDDSN-MRT system with 
a selection of state-of-the-art methods [24, 25] to deter-
mine whether our system could complete tracking opera-
tions in occlusion fragments and perform comparably, 

Fig. 5 The pipeline of the proposed EDDSN-MRT system. Data preprocessing: (1) recordings are captured from a single optical camera; (2) frames 
with and without individual occlusion are identified; Tracking individuals in non-occlusion frames: (1) an algorithm based on blob overlapping is 
used to assign identities; Tracking in occlusion frames: (1) the ear detection network is trained with images of labeled ears; (2) the object detection 
network is used to characters the spatial and image features of individual ears; (3) a dual-Siamese network is trained using the spatial and image 
features of individual ears; Final Tracking Result Generation: the final result is a combination of tracking in both occlusion and non-occlusion frames
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if not better, than those in current use. In addition, we 
validated our system using an additional dataset to deter-
mine whether the EDDSN-MRT system could perform 
behavior analysis, including characterization of locomo-
tion and movement phenotyping, and group-level loca-
tion distribution profiling.

Datasets
Dataset A
This unpublished dataset contains one clip which was 
used in training and testing of the object detection net-
work (ODN). The video stream was recorded inside a 
glass chamber (size 50 length × 30 width × 35 height 
 cm3). The chamber did not have a roof and the walls were 
high enough to prevent the mice from escaping. The bot-
tom of the cage was covered with a polyvinyl chloride 
plastic sheet for building a featureless background. The 
camera was set 50  cm from the top of the ground. The 
sample was one male C57BL/6 J mouse (aged 3 months, 
obtained from the SLRC laboratory animal center, Shang-
hai, China) who was single-housed in an individually 
ventilated cage (Type 500) in a temperature (22° ± 2 °C), 
humidity (45–65%) and light controlled room with a 
12–12 h light–dark cycle (12 h of lights on starting at 6:00 
am, and 12 h of lights off starting at 18:00 pm). The length 
of the video for training and testing was 17 min and 20 s, 
with 51,600 frames in total. The clip had 1080P original 
resolution and 60FPS frame rate. Details of Dataset A are 
shown in Table 6.

Dataset B
Dataset B is a public dataset that contains 6 clips of video 
used for validation of tracking systems performance 
[24]. Two videos with four mice were recoded inside a 

translucent plastic cage (size 30 length × 47 width × 35 
height  cm3) chamber inside a bigger tank made of glass. 
There was no roof on the chamber and the walls were 
high enough to prevent the mice from escaping. Four 
videos with two mice were recorded in a transparent 
plastic cage (size 18 × 32 × 20  cm3) covered with a trans-
parent Perspex roof to prevent the mice from escaping. 
In both cases, the bottom of the cage was covered with 
sawdust for the comfort of the animals. Cameras were set 
around 110 cm and 100 cm from the top of the ground 
for the four-mice and two-mice videos, respectively. With 
the exception of the agouti mouse in the video named 
2aguties, the other mice were presumed to be C57BL 
mice. Details of Dataset B are also shown in Table 6.

Dataset C
This dataset (unpublished) contains 4 clips of video used 
for monitoring of rodent movements in experiments. 
The video streams were recorded inside a plastic cage 
size 60 length × 45 width × 37 height  cm3). There was no 
roof on the cage and the floor was uncovered. The cam-
era was set 50 cm from the top of the floor. The sample 
was a group of male C57BL/6 J mice (n = 32 subjects in 
total) obtained from the SLRC laboratory animal center, 
Shanghai, China). Two groups were obtained, one aged 
3-month and the other, 18-months (n = 16 for each age 
group). The mice were housed in IVC cages (Type 500, 4 
mice per cage) in a temperature (22° ± 2 °C) and humidity 
(45–65%) controlled room with 12–12 h light–dark cycle 
(12 h of lights on starting at 6:00 am, and 12 h of lights off 
starting at 18:00 pm).

For each age group, the mice were divided into inter-
mittent fasting (IF) and ad libitum feeding (AL; the sham 
group) groups (as shown in Table  6). The paradigm 

Table 6 Details of the three datasets used in this study

Dataset ID Video name Number of 
samples

Age Intervention type Frames per 
second

Duration Resolution

A A1 1C57BL 1 3-mouth None 60 17′20” 1920 × 1080

B B1 2aguties 2 Unknown Unknown 49 05′19” 984 × 557

B B2 2negroscanosos 2 Unknown Unknown 49 12′24” 984 × 557

B B3 2negroslisocanoso 2 Unknown Unknown 49 07′06” 984 × 557

B B4 2negroslisos 2 Unknown Unknown 49 07′06” 984 × 557

B B5 4 black mice (1) 4 Unknown Unknown 25 33′58” 1272 × 909

B B6 4 black mice (1) 4 Unknown Unknown 24 52′54” 1272 × 894

C C1 3 m-IF 8 3-mouth Periodic fasting 48 40’ 1280 × 720

C C2 3 m-AL 8 3-mouth None 48 40’ 1280 × 720

C C3 18 m-IF 8 18-mouth Periodic fasting 48 40’ 1280 × 720

C C4 18 m- AL 8 18-mouth None 48 40’ 1280 × 720
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of IF involves periodic dietary restriction in a fasting 
week, in which the mice are fasted every other day, i.e., 
fasted one day and fed ad  libitum one day. Feed pallets 
for the IF group were provided or removed at 10:00 am 
every day. The periodic fasting operation lasted for one 
week, and the mice in the IF groups were allowed to be 
fed ad libitum for every other week. For each age group, 
one of them was set as the IF group and the other, the AL 
(sham) group. Water was available ad libitum for all mice, 
regardless of group allocation. The recording operations 
were performed 8  weeks later when the mice were put 
on fasting, and filming was between 8:00–10:00 am. Both 
the IF and AL group animals were fasted overnight with 
no access to food for 8–10 h before recording. The length 
of each video was 40 min. Details of Dataset C are shown 
in Table 6.

Data processing
Like most conventional multiple animal tracking 
approaches, we divided the frames into occlusion 
frames and non-occlusion frames as part of preproc-
essing. The first step was segmentation [45, 46], where 
given a frame of video, it was necessary to distinguish 
between pixels associated with subjects (i.e., the mice) 
or the background. In this step, each frame was normal-
ized with respect to its average intensity to correct for 
illumination fluctuations. It was also possible to imple-
ment background subtraction by generating a model 
of the background calculated as the average of a collec-
tion of frames obtained via subsampling the video. And 
according to the standard notation in the terminology 
the image processing field, here we refer to a collection 
of connected pixels that are not part of the background 
as a blob. The second step was frame classification, 
where frames were divided into occlusion frames and 
non-occlusion frames. In the open field test, the number 
of rodent subjects was a constant value declared by the 
user. It was possible to perform a comparison between 
the number of calculated experimental subjects and the 
number of actual experimental subjects to distinguish 
whether or not frame occlusion occurred. Put simply, 
when the number of blobs in a frame corresponded to 
the actual number of subjects, we considered this frame 
as a non-occlusion frame. In contrast, if the number of 
blobs and subjects did not match, we designated this an 
occlusion frame.

Tracking in non-occlusion frames
In non-occlusion frames, the mice are not occluded by 
default. Thus, one blob can be used to represent one 
individual. In this case, blob data can be used to generate 
continuous individual trajectories that track the motion 
of individual subjects. In videos with high frame rates, a 

rodent’s location in space does not change too much in 
the gap between two adjacent frames. Therefore, if we 
overlay two adjacent frames into one image, the pair of 
blobs representing the same individual would share a 
large number of pixels in space. As such, in adjacent 
frames, the blob with the most overlapping pixels inherits 
the identification of the blob in the previous frame and 
the identifications can be assigned for every blob frame-
by-frame. Technologies in non-occlusion tracking are 
simple and validated [47].

Tracking in occlusion frames
Because of the occlusion of subjects, some blobs in occlu-
sion fragments would contain multiple individuals in 
space. Therefore, we cannot assign identification directly 
like the operation in non-occlusion frames. In this study, 
the tracking operation in occlusion frames consisted of 
three main steps. The first step was ear labeling, and the 
ear was used for tracking in occlusion frames as opposed 
to the whole body of subjects. Following this, the object 
detection network was used to extract the location of 
ears in occlusion frames. The last step was using a dual-
Siamese network to assign identification to located ears.

Ear labeling
Since the video in Dataset A only contained a single 
rodent individual, the labeling could be completed by 
implementing two embedded single-target tracking 
operations with manual calibration. The first embedded 
operation was used to track the entire body of the subject 
in order to build a new video with cropped frames (the 
frames only contained the region of the rodent’s body). 
The second one was used to extract ears in the video for 
labeling in the original video clip. Due to the featureless 
background of the original video, the single target track-
ing operations could be simply replaced by two threshold 
segmentation processing. The first one was used to seg-
ment rodents and the background. The second one was 
for the ears and the body.

Ear detection network
Because of the extremely small size of mouse ears, the 
conventional detection network lacked interpretabil-
ity of extremely small size objects, resulting in a low 
accuracy. In this case, improving the detection of small 
objects was necessary. In this step, we applied YOLOv5 
[28] as the prototype framework due to its flexibility in 
modification to improve it (Fig. 6a).

As shown in Fig. 6, the EDDSN consists of three main 
parts: the Backbone, the Neck and the Output (the Head). 
The Backbone module is a convolutional neural network 
that aggregates and forms image features at different 
granularities. The Neck module is a series of layers to mix 
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and combine image features which are passed forward 
to prediction.Then, the features from the Neck module 
were input into the Output module that used convolution 
layers to achieve ear detection. The sub-module compo-
nents of the EDDSN are shown in more detail in Fig. 6b. 
The Focus module transferred spatial information to the 
channel dimension on the input images to help reduce 
the parameters used in the network to get faster infer-
ence without mAP penalty. The CBL module consisted 
of a Conv + BN + Leakyrelu activation function. The 
Conv is convolutional network and BN is batch normal-
ized processing. The Res-unit, which is borrowed from 
the residual structure of the Resnet network, is used to 
build a deeper network. The CSP1_n is borrowed from 
the CSPNet network structure, is composed of a CBL 
module, a Res-unit module, and Conv and Concate. The 
CSP2_n is borrowed from the CSPNet network struc-
ture, which consists of Conv and n Res-unit modules. 

The Concate module is the Focus structure, which first 
concatenates multiple slice results, and then feeds them 
into CBL module; the SSP module uses the maximum 
pooling method to perform multi-scale fusion [48, 49] 
The images were first input to the Backbone for feature 
extraction, and then fed to PANet for feature fusion. 
Finally, the Head is the output of the detection results.

Similar to other methods in the same field, transfer 
learning methods using pre-trained models can shorten 
the training time and improve accuracy. Here, we tested 
the performance of the YOLOv5 models with and with-
out pre-trained weights, and the results are shown in 
Table 7. It can be seen that on mAP at 0.5 and mAP at 
0.5:0.9 (mean average precision at IoU is 0.5 and from 0.5 
to 0.9), the performance of the models with pre-trained 
weights performs relatively better.

Due to the requirement to use transfer learning strat-
egy in this study, the pretrained weight was loaded to 

(a) Detec�on network. (b) The sub-module components of the detec�on network.
Fig. 6 The structure of the proposed object detection network. a The detection network consists of three main parts: The (1) Backbone, a 
replaceable convolutional neural network for clustering and forming image features from fine and coarse gained images; The (2) Neck, a series 
of network layers for fusing and combining image features which are then sent to the predicting network, and (3), The Output, a network for 
prediction of image features, generation of bounding boxes and prediction of results. b The sub-module components of the detection network: (1) 
Convolutional layer. (2) Batch normalization operation. (3) Leaky Relu activation function. (4) Slicing operation. (5) Concatenate function puts slices 
into a block with 4X channels

Table 7 Performance difference between pretrained and non-pretrained models

Model (Large CSPDarknet as backbone) mAP at 0.5 % mAP at 0.5:0.9 %

Improved framework with pretrained 97.07 (P=0.63) 64.32 (P=0.0017)
Original YOLOv5 with pretrained 96.10 58.58

Improved framework without pretrained 96.82 59.73

Original YOLOv5 without pretrained 96.18 58.15
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model Backbone (CSPDarknet) for improving per-
formance and this part of the framework cannot be 
modified in structure (illustrated by the box marked as 
Backbone: CSPDarknet in Fig. 6a). The Model Neck is an 
inverted pyramid structure similar to PANet. And in this 
case, because of the inability to make modifications in the 
backbone part, the improvement could only be imple-
mented on the Neck and Head. Instead of the original 
structure, the improved Neck and Head have the fourth 
connection of information stream from the low-level 
layer of the model’s Backbone (illustrated as the red box 
in Fig. 6a). This modification would improve the pyramid 
structure for better performance in obtaining low-level 
information and detailed information, thereby making 
a better performance for detecting objects of extremely 
small size.

Identification assignment based on a dual Siamese 
network
Essentially, multiple object tracking in the video stream 
is a kind of identification assignment in adjacent frames. 
For ear tracking, it was necessary to associate each 
cropped image of ears in a frame with the ones in the 
previous frame. As we know, the biometrics character-
istic extracted from a frame of a high-speed video has 
the uniqueness of morphology with the ones of the same 
individual in adjacent frames, as well as spatial informa-
tion. Therefore, the similarities of image characteristics 
and spatial information of ears can be used as meas-
urement metrics to implement identification assign-
ment. Hence, we propose a fusion framework with dual 
Siamese-networks as Backbones that can process both 
spatial information and image feature information. The 
network structure is shown in Fig. 7. The spatial informa-
tion and image feature information of a single ear in two 
adjacent frames are processed respectively by two inde-
pendent Siamese networks [50–52]. Since the inputs of 
two independent Sub-Siamese-Networks are not of the 
same kind, the architectures of each are different. The 
Siamese network for processing images (as shown in 
Fig.  6b) is like another traditional Siamese network for 
matching images, in that it needs a convolutional net-
work to extract features. Therefore, ResNet50 [50] was 
selected to perform this function. However, in the sub-
network for processing coordinates, this convolutional 
architecture was omitted since the coordinate is input as 
a vector. The network parts described share the weights 
during training, so that the paired data pass through the 
exact same network architecture. Then, both sub-net-
works feed the vectors into the similarity checker with 
the contrastive loss [51, 52] to measure the similarity 
scores between image pairs and coordinate pairs. Finally, 

the results are concatenated as the input for another full 
connected network to finally obtain the similarity meas-
urement to complete identification assignment.

Generation of the final tracking results
Generally, the final tracking result is a combination 
of the results in occlusion frames and non-occlusion 
frames. The key to the combination is to link the track-
ing trajectories in both kinds of frames. Here, we used 
a frame-classifying operation to make every occlusion 
fragment incorporate one previous frame and one subse-
quent frame (these frames were non-occlusion frames). 
And then, these frames were employed for tracking 
using both strategies (the one for occlusion and the one 
for non-occlusion frames) and were assigned with the 
same identification to link the trajectories in two kinds of 
fragments.

Experiments
Implementation details
Implementation details for  ear detection network The 
improved EDN was trained and tested on Dataset A. The 
clip for training and testing of ODN with 1080P original 
resolution and 60FPS frame rate, was used to take one 
image every other 5 frames. In total, 10314 frames were 
extracted randomly, which means that 20,628 images of 
mouse ears were used as the training input. And 2166 
frames (4332 images) were used for testing. Due to the 
application of transfer learning strategy, the CSPdarknet 
[48] was used as the default Backbone model of EDN. In 
the training procedure, the resolution of the input video 
was 1280 × 720 and the number of epochs was 50, the 
batch size was set to 8 and the learning rate was set to 
0.01. The main hyper-parameters of ear detection net-
work are shown in Table 8.

There are 4 different pre-trained CSPdarknet models 
on MS-COCO [53] dataset ranging from the smallest one 
with 7.5 million parameters and 140 layers to the largest 
with 89 million parameters and 284 layers. In Table  9, 
which shows the ear detection performance of these 4 
pre-trained models, we see that the “Large” pre-trained 
model achieves the highest mAP at 0.5:0.9 (mean average 
precision from 0.5 to 0.9 interaction over union), thus, in 
this study, we used the “Large” pretrained model.

Implementation details for  training and  testing 
with dual‑Siamese network Since Dataset A is currently 
the only accessible dataset to do automatic labeling, this 
dual-Siamese-network was trained with the ear images 
and spatial information extracted from Dataset A. To 
be compatible with a lower frame rate video (the video 
in Dataset A has a high frame rate), the ear data used to 
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(a) Dual-Siamese-Network 

(b) Sub-Siamese network for image processing

(c) Sub-siamese network for coordinate processing
Fig. 7 The structure of the proposed tracking network. a Dual-Siamese-Network: Input information: (1) images as input 1; (2) spatial information as input 2; 
Siamese network to process ears: the two networks in each Siamese-network are identical, with shared weight matrices at each layer; Similarity calculating 
network: using outputs of Siamese network to calculate the similarity of ears in adjacent frames to assign identifications; b Sub-siamese network for image 
processing; c Sub-siamese network for coordinate processing
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train the target detection network was used here (i.e., one 
frame was taken every 3 frames, so the actual frame rate in 
training was only 20 frames per second). The images and 
spatial information in adjacent frames were automatically 
marked as positive samples, and the two with a time inter-
val of more than one minute were automatically marked 
as negative samples. Obviously, the number of positive 
samples constructed in this way is limited, at most 24958. 
Negative samples can greatly exceed this amount. Here, 
we randomly selected 20,000 positive samples and 20,000 
negative samples from it as the training dataset for the 
dual-Siamese network.

Clips in Dataset B for comparison of tracking system 
performance were used as input with original parameters 
and resolutions. Details are shown in Table 9.

Special attention should be paid to the video B6. The 
total number of frames in this video is 76191 by preproc-
essing of video-to-frames. But there was a fragment of 
human interference in the video. Therefore, the inter-
fered with fragment needed to be removed (with 2108 
frames in total) for the EDDSN-MRT to work properly. 
This left two non-interfered fragments (with 37,483 and 
36,603 frames) which were processed using our methods.

Implementation details for rodent experiment validation 
on intermittent fasting intervention Intermittent fasting 
(IF) is an increasingly popular dietary approach used for 

weight management and maintenance of overall health 
[54]. Tracking individual subject’s trajectories provides a 
noninvasive approach for the assessment of locomotion 
changes in animal models with different interventions. 
We collected data from 32 mice  (n18m-IF = 8,  n18m-AL = 8, 
 n3m-IF = 8,  n3m-AL = 8; Table  6) in Dataset C with our 
tracking system and subjected them to distributions of 
temporal features (e.g., velocity) analyses. Clips in Data-
set C were used with original parameters and resolutions. 
By only evaluating spontaneous movement without any 
induced conditions, we demonstrated the usability and 
unbiased character of our framework for individual and 
social behavior monitoring in animal models. By apply-
ing the tracking system in this experiment, differences in 
group average and individual velocities and location dis-
tribution between the IF and AL groups can be observed.

Methods for comparison
Ear detection methods
To show the effectiveness of the proposed ear detection 
network, we compared it with several object detection 
methods as follows:

1. YOLOv3

YOLOv3 is the  3rd version of YOLO series [48]. It 
employs a multi-scale schema, predicting bounding 
boxes at different scales. This allows Yolov3 to be more 
effective for detecting smaller targets when compared 
to the previous version YOLOs. It uses dimension clus-
ters as anchor boxes in order to predict bounding boxes 
around the desired objects in given images. Logistic 
regression is used to predict the object score for a given 
bounding box.

Here, it was trained with Adam optimizer with a learn-
ing rate of 0.001, the number of epochs set to 50, batch 
size set to 8, resolution at 1280 × 736 (YOLOv3 network 
only accepts resolutions whose value is an integer multi-
ple of 32), and momentum at 0.9.

2. YOLOv5

The YOLOv5 model is a detector consisting of a cross-
stage partial network (CSPNet, as shown as Fig.  5b) [26] 
backbone, and a “Head” model with Path Aggregation 
Network (PANet) for instance segmentation. The Back-
bone network combined with a Spatial Pyramid Pooling 
(SPP) network [56] that was used to resist object defor-
mation. The model was trained with SGD optimizer with 
a learning rate of 0.01, epoch set to 50, batchsize set to 8, 
resolution at 1280 × 720, and momentum at 0.937.

Table 8 The main hyper-parameters of the ear detection 
network

Hyperparameters The 
optimal 
setting

Input resolution 1280 × 720

Train epoch 50

Batch size 8

Optimizer SGD

Initial learning rate 0.01

Final OneCycleLR learning rate 0.2

SGD momentum 0.937

Table 9 Performance comparison of different volumes

Model volume Layers Parameter mAP at 0.5 % mAP at 0.5:0.9 
%

Small 280 7.9 million 97.25 62.87

Medium 378 23.5 million 96.63 63.24

Large 476 51.7 million 97.07 64.32

Extreme 574 96.5 million 94.73 50.56
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3. EfficientDet

The EfficientDet is an object detection framework built 
by the Google Brain team [27]. It achieved state-of-the-
art accuracy on the popular MS-COCO dataset [53]. It 
includes pre-trained models classed from D0 to D7, which 
each have different numbers of parameters (D0 with the 
fewest and D7 with the highest). In the application pur-
pose considered (for video frame processing, there is the 
requirement of execution speed), the EfficientDet D1 was 
selected. It was trained with SGS optimizer with a learn-
ing rate of 0.00005, epoch set to 50, batchsize set to 8, and 
momentum set to 0.9.

Animal tracking methods
To show the performance of the proposed EDDSN-MRT, 
we compared it with several existing state-of-the-art ani-
mal tracking methods as follows:

1. Toxtrac

Toxtrac [25] is an automated open-source executable 
software for image-based tracking that can simultane-
ously handle several subjects for monitoring in laboratory 
environments. It can be used for high-speed tracking of 
insects, fish, rodents or other species to provide useful 
locomotor information in animal behavior experiments. 
It was implemented with the threshold set to 90, mini-
mum Object size set to 2000, maximum Object size set 
to 40,000, and maximum Distance/Frame set to 100. The 
numbers of individuals corresponded to the number of 
mice in the video.

2. idtracker.ai

Idtracker.ai [24] is an image-based multi-animal tracking 
system that uses convolutional neural networks to identify 
each of the individuals in the video. It uses offline training 
strategy. In the videos with a higher density of individu-
als, idtracker.ai extracts frames of the single individuals to 
train an image classification network to identify individu-
als. It was implemented with the area set as [2000,4000], 
and intensity was set as 80. The number of blobs was set 
equal to the number of individuals featured in each video. 
The range was set equal to the number of frames of each 
video.

Evaluation metrics
Metrics for ear detection
As the methods for many conventional object detection 
networks, the mean average precision– mAP at 0.5 and 
mAP at 0.5:0.9 are introduced as evaluation metrics to 
quantitatively measure the detecting performance. These 

evaluation metrics are based on the Intersection over 
Union (IOU) of the ground truth and detected bounding 
boxes.

We set the threshold to determine whether the object is 
a true positive. mAP at 0.5 means when IoU is set to 0.5, 
the average precision of all categories is calculated inde-
pendently and then averaged by the number of categories. 
In addition, mAP at 0.5:0.9 illustrates the average mAP 
over different IoU thresholds (from 0.5 to 0.9, in steps of 
0.1).

Metrics for multiple rodent tracking
We used the widely accepted metric multi-object tracker 
accuracy (MOTA) proposed in the 2016 MOT Challenge 
[61]. To evaluate the performance of trackers, we used the 
py-motmetrics library. The MOTA tracking performance 
measure used in this study is the most commonly used 
metric to benchmark MOT solutions (Eq. 3).

where false negative (FN), false positive (FP) and iden-
tity switch (IDSW) are the three types of errors that 
occur. False negatives are defined as an object that is not 
tracked, false positives are defined as tracked objects 
which should not be tracked, and identity switches 
describe two objects that should be tracked but they 
swap identities. The GT indicates the absolute number of 
individual identities. The direct output of the tracker is a 
series of IDs, which are mapped to our manually anno-
tated tracks. The result of this implementation is a large 
number of ‘‘tracklets’’ (partial tracks), subsets of which 
belong to individual identities.

This paper also introduces the metric ICR (ID Correct 
Rate). The ICR means the number of images correctly 
identified over the total number of individual images vali-
dated [24, 25] (Eq. 4).

where the missing identities (Miss), the switched iden-
tities (Switch) and the drifted identities (Drift) are the 
three types of errors that occur. Via the mapping between 
output and manually annotated tracks, it can be iden-
tified when the tracker is not able to detect an object 
(missing identities), when the tracker detects an object 
with the wrong position (drifting identities), or when the 
identities (two or more) tracks are switched.

IoU =

Area of overlap between bounding boxes

Area of union between bounding boxes

(3)MOTA = 1−

∑

t FNt + FPt + IDSWt
∑

t GTt

(4)ICR = 1−

∑

t Misst + Switcht + Driftt
∑

t GTt
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It must be emphasized that these methods are designed 
based on a constant number of experimental subjects. this 
design strategy would prevent the tracker from providing 
more false positive trajectories than the real number of 
experimental individuals..

Statistical analysis
For the proportion indicators such as ICR, MOTA and 
mAP, we performed the "N-1" Chi-squared test to assess 
for significant effects. To determine whether there were 
significant differences between two variables, we first per-
formed the Shapiro–Wilk test and Levene’s test to assess 
for normality and homogeneity of variance, respectively. 
Following, for normally distributed variables, we per-
formed Student’s T test, and for non-normal variables we 
performed the Wilcoxon Rank Sum Test. Specifically, for 
testing the velocity of different groups, we used the average 
velocity of all individuals in a particular group in 8 time 
periods as a variable, and for testing the dwell distribu-
tion of different groups, we used the summed histogram 
values of all individuals of a group in all bins as a variable. 
For the two-dimensional standard deviation to measure 
the individual distribution of mice, because two-dimen-
sional standard deviation is a scalar, it cannot be tested for 
significance. All statistical analyses were performed using 
MedClac, version 20.027, MedCalc Software Ltd, Belgium.
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