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Abstract 

Background Intervertebral disc herniation, degenerative lumbar spinal stenosis, and other lumbar spine diseases 
can occur across most age groups. MRI examination is the most commonly used detection method for lumbar spine 
lesions with its good soft tissue image resolution. However, the diagnosis accuracy is highly dependent on the experi‑
ence of the diagnostician, leading to subjective errors caused by diagnosticians or differences in diagnostic criteria 
for multi‑center studies in different hospitals, and inefficient diagnosis. These factors necessitate the standardized 
interpretation and automated classification of lumbar spine MRI to achieve objective consistency. In this research, 
a deep learning network based on SAFNet is proposed to solve the above challenges.

Methods In this research, low‑level features, mid‑level features, and high‑level features of spine MRI are extracted. 
ASPP is used to process the high‑level features. The multi‑scale feature fusion method is used to increase the scene 
perception ability of the low‑level features and mid‑level features. The high‑level features are further processed using 
global adaptive pooling and Sigmoid function to obtain new high‑level features. The processed high‑level features 
are then point‑multiplied with the mid‑level features and low‑level features to obtain new high‑level features. The 
new high‑level features, low‑level features, and mid‑level features are all sampled to the same size and concatenated 
in the channel dimension to output the final result.

Results The DSC of SAFNet for segmenting 17 vertebral structures among 5 folds are 79.46 ± 4.63%, 78.82 ± 7.97%, 
81.32 ± 3.45%, 80.56 ± 5.47%, and 80.83 ± 3.48%, with an average DSC of 80.32 ± 5.00%. The average DSC 
was 80.32 ± 5.00%. Compared to existing methods, our SAFNet provides better segmentation results and has impor‑
tant implications for the diagnosis of spinal and lumbar diseases.

Conclusions This research proposes SAFNet, a highly accurate and robust spine segmentation deep learning 
network capable of providing effective anatomical segmentation for diagnostic purposes. The results demonstrate 
the effectiveness of the proposed method and its potential for improving radiological diagnosis accuracy.
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Background
The spine is a crucial part of the musculoskeletal system 
supporting the body and organ structures, and facilitat-
ing human activity and load transfer. It also serves as a 
protective barrier for the spinal cord that guards against 
mechanical shock such as impact. MRI (magnetic reso-
nance imaging) [1] is the most widely utilized diagnostic 
tool for detecting spinal injuries or degenerative dis-
eases in spine surgery [2]. Recent advancements in deep 
learning have greatly improved the accuracy of spine 
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positioning, segmentation, and recognition in MRI. These 
developments have played a pivotal role in diagnosing 
and treating a variety of spinal conditions, including sur-
gical planning, prognosis assessment, and image-guided 
intervention procedures [3]. However, due to the unique 
characteristics of MRI acquisition, neighboring vertebrae 
and different categories of vertebrae (intervertebral discs) 
can appear similar in shape and appearance, particularly 
in the first or last sagittal slices, making differentiation 
challenging. Furthermore, visual differences such as vari-
ations in illumination or contrast can further complicate 
the identification of intra-class vertebrae. Addition-
ally, unlike 2D images which only have width and height 
dimensions, the depth dimension in 3D MRI increases 
the computational cost of the model.

Machine learning [4] techniques are widely utilized to 
extract essential information from MRI, such as vertebral 
bodies, spinal shapes, and intervertebral discs. In fact, 
locating anatomical structures in MRI datasets is often 
the primary objective for identifying and classifying path-
ological features or predicting prognosis. Peng [5] pro-
posed a novel search approach that utilizes polynomial 
functions to fit the intensity distribution of all disc clues 
in a slice. Schmidt [6] introduced an efficient method for 
localizing anatomical structures based on parts, which 
incorporates contextual shape knowledge in a probabil-
istic graphical model. This method can even perform sta-
ble testing in cases where spinal images are obstructed. 
Oktay [7] developed a method for locating and labeling 
lumbar vertebrae and intervertebral discs in sagittal MRI 
slices with missing or abnormal structures, employing a 
Markov chain graphical model of ordered intervertebral 
discs and vertebrae in the lumbar spine, along with local 
image features and semi-global geometric information, 
to perform proportionally invariant localization of both 
intervertebral discs and vertebrae. Glocker [8] proposed 
an algorithm for typical feature localization and rec-
ognition of spinal pathology and image artifacts based 
on a supervised classification forest and avoids explicit 
appearance parameter models. However, in recent years, 
with the outstanding performance of artificial neural 
networks and deep learning in research, deep learning is 
increasingly adopted to locate spinal structures. Chen [9] 
proposed an innovative method for automatic vertebral 
recognition with the joint convolutional neural network 
(J-CNN) in 3D CT volumes. This cutting-edge model 
is capable of eliminating the detection errors of a set of 
rough vertebral centroids generated by a random forest 
classifier. On the other hand, Payer [10] utilized a regres-
sion technique that relies on the heat map of the target 
location to achieve localization in the variant anatomy 
space, which depends on a spatial network of precise 
local appearance responses and modeling of anatomical 

variation landmarks. In image analysis, understanding 
the content of an image is crucial, which involves seg-
menting an image into multiple regions at a pixel level so 
that each pixel belongs to a specific region. This process 
is known as semantic segmentation. In medical imag-
ing, segmentation algorithms should not only identify 
whether a pixel belongs to the intervertebral disc, but 
also determine which instance a part of the segmenta-
tion belongs to. This type of segmentation is commonly 
referred to as an instance segmentation algorithm [11]. 
To evaluate the quality of segmentation algorithms, it is 
necessary to establish quantitative measures, with the 
most commonly used being the Dice similarity coefficient 
(DSC) and the mean surface distance (MSD). The DSC 
measures the spatial overlap between the segmentation 
image and the grand truth, while the MSD describes the 
average distance between each surface voxel of the seg-
mentation surface and the closest surface voxel in the 
grand truth. Çiçek [12] proposed a volume segmentation 
algorithm, 3D Unet, which learns from sparsely anno-
tated volume images. This algorithm utilizes a weighted 
loss function and targeted data augmentation, allowing 
3D Unet to generate highly generalized results with mini-
mal training data. Xiao [13] developed a new network, 
3D ResUnet, by integrating Resnet, attention, and Unet 
and replacing each sub-module of Unet with a resid-
ual connection. This network model has demonstrated 
excellent performance on images with insufficient light 
sources. Zhou [25] proposed a method for rethinking 
semantic segmentation. Traditional semantic segmenta-
tion methods treat Softmax weights or query vectors as 
learnable class prototypes. However, this research reveals 
the limitations of such methods and presents a non-para-
metric alternative. The model uses a set of non-learnable 
prototypes to represent each class and relies only on the 
average features of a small number of training pixels. By 
employing a non-parametric nearest prototype retrieval 
approach, dense prediction is achieved. Chen [14] has 
extended DeepLabv3 by combining the spatial pyramid 
pooling module and encoder-decoder structure charac-
teristics and adding a decoder module, thus forming a 
new network, DeepLabv3 + . The new DeepLabv3 + opti-
mizes boundary segmentation, especially along the 
object’s boundary, and further explores the Xception 
model by applying depth separable convolution to the 
Atrous spatial pyramid pooling and decoder modules, 
forming a faster and more powerful encoder-decoder 
network. Zhang [15] proposed the Cascade Fusion 
Network (CFNet) to enhance dense prediction perfor-
mance. The main structure of this network is to insert 
feature operations into the backbone network, allowing 
more parameters for feature fusion and greatly increas-
ing the richness of feature fusion. CFNet has surpassed 
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ConvNeXt and Swin Transformer by 1% ~ 2% accuracy in 
object detection and instance segmentation tasks. Zhou 
[24] proposed a three-dimensional memory network 
named VMN for interactive segmentation of 3D medical 
images. This method utilizes a 2D interaction network to 
generate initial 2D segmentation for the selected slices 
and further refines it using an enhanced memory net-
work and a quality assessment module.

For the segmentation model of spinal MRI, it faces the 
challenge of inter-class similarity and intra-class vari-
ation. Inter-class similarity refers to the high similarity 
between the first the last sagittal plane of the interver-
tebral discs (IVDs) in each sample, while intra-class 
variation refers to the visual differences among IVDs of 
the same category from different samples. To address 
these issues, we propose a segmentation method called 
Scene-Aware Fusion Network (SAFNet) that simultane-
ously segments the vertebral bodies and IVDs. The study 
extracts low-level, mid-level, and high-level features from 
the MRI and utilizes the correlation between different 
spinal structures to overcome the challenges of inter-
class similarity and intra-class variation.

Methods
To solve the issue of small inter-class differences 
and significant intra-class differences in spine MRI, 
along with the computational difficulties processing 

high-dimensional 3D images, a spin segmentation tech-
nique that utilizes a Scene-Aware Fusion Network 
(SAFNet) is proposed. The segment result is shown 
in Fig.  1. AFNet is composed of five modules: Feature 
extraction network, Atrous Spatial Pyramid Pooling, Self-
attention mechanism, Multiscale fusion, and Dimension 
splicing.

Feature extraction network
SAFNet extracts low-level, mid-level, and high-level fea-
tures from the input spinal magnetic resonance images 
by utilizing its structure as shown in Fig.  2. Before fea-
ture extraction, the input image undergoes CBR process-
ing, which includes a 3D convolution with a kernel size 
of 3 × 3x3. The formula for CBR processing is presented 
below:

where N  represents the batch size, Cin denotes the num-
ber of channels in the corresponding input image, D 
represents the depth, H represents the height, and W  
represents the width of the image. K  denotes the kernel 
size and ⋆ signifies the valid 3D cross-correlation opera-
tor. The output undergoes normalization [16]:

(1)

out
(

Ni,Coutj

)

= bias
(

Coutj

)

+
Cin−1
∑

k=0

weight(Coutj , k) ⋆ input(Ni, k),

Fig. 1 Spine parsing results. Spine parsing refers to the multi‑class segmentation of both the vertebrae and intervertebral discs, whereby each 
individual vertebra or intervertebral disc is assigned its own unique label. The letters T, L, and S are used to represent thoracic, lumbar, and sacral 
vertebrae, respectively. (BG represents the background.)
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For each dimension over the mini-batches, the mean 
and standard deviation are calculated, γ and β are param-
eter vectors of size C (where C is the number of features 
or channels of the input) that can be learned. Afterward, 
the ReLu activation function is used to improve the non-
linearity of the feature map:

Low-level features are extracted by applying a CBR 
process with a 3 × 3x3 kernel to the feature map that has 
been processed once. The stride is set to (1, 2, 2) caus-
ing the depth to remain the same while the width and 
height are halved. Next, a residual network is used to 
preserve the original information. The residual network 
structure is illustrated in the Fig.  3. A parallel branch 
is utilized for processing, where one branch applies a 
deeper CBR process using a 3 × 3 × 3 kernel and performs 
downsampling using a convolution with a stride of (1, 
2, 2). The other branch processes the feature map using 

(2)Bout =
Bin − E[Bin]√
Var[Bin]+ ǫ

× γ + β ,

(3)f (x) = max(0, x).

a CBR with a 1 × 1 × 1 kernel and stride of (1, 2, 2). The 
low-level features (128 × 18 × 64 × 32) are obtained by ele-
ment-wise adding the results of the two branches. Sub-
sequently, the low-level feature map is passed through 
another residual network to obtain mid-level features 
(128 × 18 × 32 × 16). Finally, the mid-level feature map is 
processed twice using the residual network process. The 
output image is then subjected to three CBR modules 
with a 3 × 3 × 3 kernel with holes to obtain high-level fea-
tures (128 × 18 × 16 × 8).

The feature extraction network produces 
three sets of features with different sizes: low-
level features (128 × 18 × 64 × 32), mid-level fea-
tures (128 × 18 × 32 × 16), and high-level features 
(128 × 18 × 16 × 8). As the level goes higher, these fea-
tures become increasingly rich in semantic information, 
while the detail information decreases due to a reduction 
in resolution. The focus of SAFNet is to fuse semantic 
information and detail information, and decode them to 
obtain the final spine segmentation result.

The feature extraction network extracts low-level fea-
tures, mid-level features, and high-level features from 

Fig. 2 The structure of feature extraction network. The residual network structure uses cross‑layer connections to directly pass input signals 
to subsequent layers and modify them in later layers to learn residual information. This network structure makes the training of SAFNet easier, 
while also improving its performance and convergence speed. In addition, residual structures can effectively reduce the number of model 
parameters and improve model generalization ability. (SAFNet denotes scene aware fusion network.)
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the input MRI, is a commonly used approach in various 
previous researches. Li [26] proposed the Lesion-atten-
tion pyramid network for diabetic retinopathy grad-
ing (LAPN), where the feature extraction network has 
the ability to integrate images of different resolutions. 
Both the low-resolution and high-resolution networks 
are complete networks with own output branches. The 
output branch of the low-resolution network is used to 
obtain lesion activation maps, while the output branch 
of the high-resolution network is used for the final diag-
nosis. The entire network progressively fuses features 
and focuses on the features of the lesion area to achieve 
lesion-based diagnostic purposes.

In this paper, a convolutional and residual network was 
used to extract low-level, mid-level, and high-level fea-
tures from the input images. CBR was employed to pro-
cess the input images for feature extraction. The feature 
extraction network utilized residual networks to preserve 
the original information. In this network, the low-level 
features were obtained by applying CBR with different 
kernel sizes and strides, and added to the output of the 
residual network. Subsequently, the residual network 
was used again to extract mid-level and high-level fea-
tures. The feature extraction network alleviated the prob-
lem of gradient vanishing by preserving and propagating 
the original information through the residual structure. 
Additionally, by fusing features extracted from different 
branches, the feature extraction network obtained richer 
semantic and detail information. This feature fusion 
enhanced the integrity and accuracy of the segmentation 
results.

Atrous spatial pyramid pooling
To enhance the receptive field and capture multi-scale 
information, Atrous Spatial Pyramid Pooling (ASPP) 
[17] is utilized to process high-level features. ASPP is 

a spatial pyramid structure that employs dilated con-
volutions and has been widely applied in various itera-
tions of Deeplab. Dilated convolutions [18] insert gaps 
between kernel elements during convolution, and the 
receptive field size is determined by the hyper-param-
eter (dilation rate). The formula for calculating the 
receptive field is as follows:

where d is the hyper-parameter of dilation. The size of 
the inserted space is d − 1 , while k denotes the original 
convolution kernel size. The formula for calculating the 
size o of the feature map after the hole convolution is as 
follows:

The dilated convolution takes an input size of i and a 
stride of s , and its purpose is to increase the receptive 
field without using pooling and downsampling opera-
tions. Which allows each output of the convolution to 
obtain a wider range of information. ASPP’s primary 
operation is to perform dilated convolutions with varying 
dilation rates on the same top feature map. The result-
ing feature maps are concatenated together to increase 
the number of channels. Finally, a convolution layer is 
used to reduce the number of channels to the desired 
value. In this research, ASPP is utilized to process high-
level features and expand their receptive field to capture 
multi-scale information using a five-branch structure, as 
illustrated in Fig. 4. The branch structure is comprised of:

• Branch 1: use a 1 × 1 convolution to reduce the 
dimensionality of the input.

• Branch 2: use a 3 × 3 convolution layer with padding 
of 6 and a dilation rate of 6 to convolve the input.

(4)n = k + (k − 1)× (d − 1),

(5)o =
[

i + 2p− k − (k − 1)× (d − 1)

s

]

+ 1.

Fig. 3 Residual network structure. The residual network structure uses cross‑layer connections to directly pass input signals to subsequent layers 
and modify them in later layers to learn residual information. This network structure makes the training of SAFNet easier, while also improving its 
performance and convergence speed. In addition, residual network structure can effectively reduce the number of model parameters and improve 
model generalization ability. (SAFNet denotes scene aware fusion network; DSC denotes Dice Similarity Coefficient.)
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• Branch 3: use a 3 × 3 convolution layer with padding 
of 12 and dilation rate of 12 to convolve the input.

• Branch 4: use a 3 × 3 convolution layer with padding 
of 18 and dilation rate of 18 to convolve the input.

• Branch 5: use a pooling layer with the same size as 
the input to pool the input to 1 × 1, then use a 1 × 1 
convolution to reduce the dimensionality, and finally 
unsampled back to the original input size. (Upsam-
pling is known as image enlargement or image inter-
polation mainly aiming to enlarge the original image.)

Finally, concatenate the outputs of these five layers, 
reduce the dimensionality to the given channel num-
ber using a 1 × 1 convolution layer, and obtain the final 
output.

Subsequently, the high-level features undergo pro-
cessing through a self-attention mechanism in both the 
spatial and channel dimensions. The features are sequen-
tially processed using spatial and channel operations.

Self‑attention mechanism
The self-attention mechanism [19] comprises the Posi-
tion Attention Module and Channel Attention Module. 

It is an attention mechanism extracted from the fea-
ture map itself. For convolution, the receptive field size 
is restricted by the size of the convolution kernel, which 
typically necessitates stacking multiple layers to focus 
on the entire feature map. The main advantage of self-
attention is its global focus, which can capture the global 
spatial information of the feature map through simple 
queries and assignments.

In the Position Attention Module, as depicted in Fig. 5, 
the input feature RB×C×D×H×W is first subjected to a 3D 
convolution with a kernel size of (1, 1, 1) for dimensional-
ity reduction. Following this, the spatial dimensions are 
flattened, which results in a feature of RB×C/8×N , where 
N = D × H × W. Another parallel branch follows the same 
process and is then subjected to a matrix multiplication 
operation, which yields an N × N matrix. The matrix 
then undergoes a softmax operation to obtain the weight 
probabilities for spatial positions. This weighted matrix is 
then multiplied with the third branch, and the resulting 
output is connected to the input feature using a residual 
structure to obtain high-level features.

Figure  6 illustrates that the high-level features 
RB×C×D×H×W obtained from the Position Attention 

Fig. 4 Atrous spatial pyramid pooling five‑branch structure captures multi‑scale information processing flow. Atrous Spatial Pyramid Pooling 
performs dilated convolutions with varying dilation rates on a single top feature map, and then concatenates the resulting feature maps to increase 
the number of channels. To achieve the desired number of channels, a convolution layer is used to reduce them. In this research project, 
a five‑branch Atrous Spatial Pyramid Pooling structure was employed to process high‑level features and broaden their receptive field for capturing 
multi‑scale information
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Module are flattened to RB×C×N , where N is equal to 
the product of D, H, and W. Another parallel branch 
undergoes the same processing and performs matrix 
multiplication, resulting in a C × C matrix. The matrix 
then undergoes a softmax operation to obtain the weight 
probabilities for spatial positions. This weighted matrix is 
then multiplied with the third branch, and the resulting 
output is connected to the input feature using a residual 
structure to obtain the high-level features processed by 
the Channel Attention Module.

The attention mechanism has been widely used in 
medicine by virtue of its capacity to automatically dis-
cover and focus on key features in images, accurately 
locate and identify abnormal or lesion areas in medical 

image tasks. Li [27] introduced a hybrid multi-head 
attention mechanism that can simultaneously focus 
on the correlations between different tasks and within 
individual tasks. This application of hybrid multi-head 
attention allows the model to better utilize the correla-
tions between multiple tasks, improving generalization 
and effectiveness. Additionally, by incorporating spatial 
positional embedding, the model can better understand 
and utilize the correlations between different positions. 
This approach adds spatial information to the corre-
sponding patches between tasks, which helps improve 
the representation capability of features. Furthermore, by 
integrating different attention heads, the model can syn-
thesize different task-related information and generate 

Fig. 5 Position attention module. Position attention module effectively learns the dependency relationships between different positions, thereby 
improving the accuracy of feature representation. The Position Attention Module calculates the similarity between each position and other 
positions, and then weights them based on their similarity to aggregate information from different positions. Then, these weighted and aggregated 
feature information is sent to a fully connected layer for further reconstruction, which enhances the representation ability of features. Ultimately, 
the high‑level features output by the Position Attention Module will contain more information about the relationship between different positions 
in the input features, which can help improve the model’s performance and generalization ability
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more comprehensive and integrated feature representa-
tions. This approach enables the model to better capture 
the correlations between different tasks and improve the 
effectiveness of multi-task learning. Oktay [28] proposed 
a two-stage attention framework called Attention U-NET 
for medical image segmentation tasks. This method uti-
lizes self-attention mechanism to capture the correlations 
of features at different levels, effectively controlling infor-
mation flow and improving the accuracy and robustness 
of segmentation results. Attention U-NET can directly 
obtain global and local connections, and its results at 
each step are independent of the previous step, allowing 
parallel computation with fewer parameters and lower 
model complexity, which facilitates better model optimi-
zation. However, Attention U-NET has a fatal drawback 
of not being able to obtain positional information.

The attention mechanism used in this study is different 
from traditional attention mechanisms that only focus on 
the relationships between channels. It focuses on the spa-
tial and channel correlations of the feature map through 
the position attention module and channel attention 
module, respectively. The advantage of this approach is 
that it comprehensively captures the information in the 
feature map and enhance the model’s expressive power. 
Furthermore, residual structures are used in the position 
attention module and channel attention module. This 
structure helps to better transmit information between 
modules, alleviating the problem of gradient vanishing, 
and making the connections between modules tight, 
which facilitates effective feature propagation.

Fig. 6 Channel attention module. Channel attention module weights and reconstructs different channels of input features to extract more 
accurate feature information. This module can learn the dependency relationships between each channel and perform adaptive adjustments 
on different tasks and datasets. Specifically, the Channel Attention Module calculates the importance of each channel and applies weighting 
across different channels so that the model can adaptively select the most useful feature information for decision‑making. This process enhances 
the interpretability and generalization ability of the model and performs better in some complex tasks
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Multiscale fusion
The low-level features possess a smaller receptive field 
and higher resolution while containing more positional 
and detail information. However, they tend to have 
lower semantic meaning and more noise since they 
have lower number of convolutions. On the other hand, 
the mid-level features have a stronger semantic infor-
mation, but lower resolution and less perception of 
details. As a result, traditional object detection models 
often rely only on the last layer of the feature extrac-
tion network to classify and locate objects due to its 
high downsampling rate. This approach results in less 
effective information for smaller objects on the last fea-
ture map, which in turn reduces their detection ability. 
This problem is referred to as the multi-scale problem. 
To address this issue, researchers have explored the use 
of multi-scale fusion to efficiently integrate low-level 
and mid-level features [20]. The structure utilizes four 
parallel branches to process the input low-level or mid-
level features to output new low-level and mid-level 
features. The specific structure is as follows:

• The first layer, dimensionality reduction (1/4), 
dilated ratio (1, 2).

• The second layer, dimensionality reduction (1/4), 
dilated ratio (1, 4).

• The third layer, dimensionality reduction (1/4), 
dilated ratio (1, 8).

• The fourth layer, dimensionality reduction (1/4), 
dilated ratio (1, 16).

Element-wise addition is performed on each branch, 
and the structures of the four branches are concate-
nated along the channel dimension. This enhances the 
scene perception ability of the low-level or mid-level 
features, while also preventing further reduction in res-
olution and increasing the receptive field.

Dimension splicing
To obtain high-level feature map Fh ∈ RB×C×D×H×W , 
middle-level feature map Fm ∈ RB×C×D×H

2 ×
W
2  , and 

low-level feature map Fl ∈ RB×C×D×H
4 ×

W
4  using the 

self-attention mechanism, it is necessary to reduce 
the computational parameters and incorporate global 
information about the features. To achieve this, global 

adaptive pooling is utilized to obtain the channel 
response map. The formula for global adaptive pooling 
is as follows:

where RGAP represents a new high-level feature, GAP 
represents global adaptive pooling, and Fh represents 
the high-level feature processed in self-attention mecha-
nism. This operation averages the spatial dimensions of 
the feature maps to obtain a single channel response map 
that reflects the global information of the features. By 
performing global adaptive pooling, the computational 
parameters are reduced, and the self-attention mecha-
nism can effectively capture global dependencies among 
features.

The new high-level features are activated using the sig-
moid function, mapping features to the range of 0 to 1:

Using the attention mechanism module to process the 
activated RS , and then multiplying the processed RSAM 
obtained by the attention mechanism module with Fl and 
Fm respectively, new high-level features are obtained:

The low-level features are represented by Fl , and the 
mid-level features are represented by Fm . The final high-
level features Fsh is sampled to have the same dimension 
as Fl and Fm , and then concatenated along the chan-
nel dimension to produce the final result. This process 
ensures that the features across all scales are combined 
effectively and contribute to the final output. By incor-
porating features from multiple scales, the model can 
capture both local and global dependencies, yielding 
improved performance on complex tasks.

Loss function
The research explores the use of pixel-wise cross-entropy 
loss to guide a 3D segmentation model in accurately clas-
sifying pixels in data. By minimizing this loss, the model 
can learn the ability to correctly classify each pixel, 
thereby achieving accurate 3D segmentation results:

where H denotes height, W  denotes width, D denotes 
depth and C denotes number of categories. Y

(

i, j, k , c
)

 
is the value of the number of categories of the 

(

i, j, k , c
)

 
pixels of the real label (0 or 1), P

(

i, j, k , c
)

 represents the 

(6)RGAP = GAP(Fh), R ∈ RB×C×1×1,

(7)RS = Sigmoid(RGAP), RGAP ∈ RB×C×1×1,

(8)Fsh = RSAM · Fl · Fm.

(9)Lpixelwise = −
∑∑∑∑

[Y
(

i, j, k , c
)

× log
(

P
(

i, j, k , c
))

+ (1− Y
(

i, j, k , c
)

)× log(1− P
(

i, j, k , c
)

)]
H ×W × D × C
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predicted probability of the class for the 
(

i, j, k , c
)

 pixel in 
the model’s output.

Dataset
The dataset used in this experiment is an open-source 
dataset from the second CSIG Image Graphics Technol-
ogy Challenge. This research combined the original train-
ing and validation sets, with a total of 172 samples. Due 
to the limited number of samples, the model is prone to 
overfitting. To mitigate this, research employed cross-
validation to evaluate the model and find the optimal 
configuration that resolves the overfitting issue. The core 
idea of cross-validation is to partition the dataset multi-
ple times and take the average of the results from multi-
ple evaluations to eliminate the adverse effects caused by 
unbalanced data division in a single split. Five-fold cross-
validation can effectively reduce the variance of model 
evaluation results and improve the accuracy of model 
evaluation.

This research used a five-fold cross-validation method 
[21]. Specifically, we selected 138 samples as the training 
set, 4 samples as the validation set, and the remaining 30 
samples as the test set. Since cross-validation involves 
random shuffling and combination, it can effectively 
increase the reliability of model performance evaluation. 
By utilizing cross-validation, we are able to evaluate the 
model’s performance accurately and provide a robust 
assessment of its effectiveness on the dataset.

Data preprocessing
The following steps are taken for all input images: crop-
ping, resampling, padding, and normalization. To remove 
the parts of the MRI ( D0 ×H0 ×W0 ) without the spine, 

a bounding box of size D0 ×H0 × W0
2  is used to crop the 

image around the center during the cropping stage. Next, 
the cropped MRI is resampled and padded to normalize 
the size to 18 × 256 × 128. Lastly, the MRI underwent nor-
malization by subtracting the mean and dividing by the 
standard deviation.

Comparison model selection
To assess the effectiveness of the proposed method, we 
selected four established spine segmentation methods for 
comparative experiments. These methods include CFNet 
[15], 3D DeepLabv3 [14], 3D ResUnet [13], and 3D 
UNet3D [12]. Detailed information and parameter design 
for each method are outlined below:

• Unet loss function is CrossEntroLoss, optimizer is 
Adam, and learning rate is 10−3.

• CFNet loss function is CrossEntroLoss, the optimizer 
is Adam, and the learning rate is 10−3.

• 3D DeepLabv3 loss function is CrossEntroLoss, the 
optimizer is Adam, and the learning rate is 10−3.

• ResUnet loss function is CrossEntroLoss, optimizer 
is Adam, and learning rate is 10−3.

Training environment
The experiments are carried out using PyTorch 1.8.1 
and CUDA 11.1 frameworks on two NVIDIA GeForce 
RTX  4090, each with 24  GB memory. The Adam opti-
mizer is employed during experiment, with an initial 
learning rate of 10−3 . The model underwent training 
for 50 epochs with batch size 8 and weight decay is 
10−4 . To adjust the learning rate dynamically, the 

Fig. 7 SAFNet segmentation MRI vertebral results. A and B are the results of the spinal mid‑sagittal plane segmentation for six subjects using 
SAFNet. (BG represents the background; MRI denotes magnetic resonance imaging; SAFNet denotes scene aware fusion network; DSC denotes Dice 
Similarity Coefficient.)
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ReduceLROnPlateau approach was employed as the 
learning rate scheduler. The mode was set to maximize 
accuracy. If there was no improvement in the validation 
accuracy for 10 consecutive rounds (patience = 10), the 
learning rate was reduced by a factor of 0.5. The data 
augmentation techniques used were random rotation, 
random contrast adjustment, and elastic deformation. 
The model saving process involved validating the model 
on the validation set after each epoch and retaining the 
model with the highest accuracy on the validation set 
throughout the training process.

Results
As shown in Fig.  7, the proposed SAFNet achieved 
accurate vertebral segmentation in MRI. Original 
MRI, SAFNet segmentation and manually drawn seg-
mentation for each group are shown. The SAFNet 
segmentation highly agrees with the manually drawn 
segmentation, especially in the S region in Fig.  7A, 
where the automatic segmentation can compensate 
for the area not drawn manually. This result is also 
reflected in Fig.  7A T12, where the manually drawn 
result did not depict the entire left side of T12, but the 

Table 1 SAFNet Achieves the Highest Mean DSC (%) for Most Individual Vertebra Segmentation

Baseline Fold_1 (%) Fold_2 (%) Fold_3 (%) Fold_4 (%) Fold_5 (%)

3D UNet 74.42 ± 5.22 72.45 ± 8.24 75.68 ± 7.42 74.22 ± 5.32 78.35 ± 3.22

CFNet 78.95 ± 5.61 77.02 ± 8.14 78.31 ± 6.46 74.46 ± 5.67 80.13 ± 2.64

3D ResUNet 78.95 ± 5.41 76.27 ± 9.07 79.04 ± 6.38 75.25 ± 5.76 80.07 ± 4.49

3D DeepLabV3 79.19 ± 6.52 78.62 ± 8.48 82.77 ± 3.46 72.59 ± 5.88 80.83 ± 3.48

SAFNet 79.46 ± 4.63 78.82 ± 7.97 81.32 ± 3.45 80.56 ± 5.47 81.45 ± 3.47

Fig. 8 The mean DSC (%) for the most of individual vertebra segmentation visualization results. DSC is a commonly used indicator to evaluate 
the accuracy of segmentation, which can reflect the similarity between the model output and the ground‑truth annotation results. SAFNet 
performs well in terms of vertebral segmentation visualization effect, can effectively extract and represent vertebral structure information, 
and achieves the highest average DSC for most single vertebral segmentation visualization results on multiple testing datasets, indicating 
that the model has high stability and generalization ability. (SAFNet denotes scene aware fusion network; DSC denotes Dice Similarity Coefficient.)
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SAFNet model trained was able to well segment the 
area that is insufficiently segmented manually. These 
results indicate that the automatically segmented mask 
has highly overlaps with the manually drawn mask, and 
that SAFNet can achieve a balance between over-seg-
mentation and under-segmentation.

Table  1 and Fig.  8 show the mean DSC results of 
SAFNet and four other comparative models for the 
segmentation of 17 spinal structures in 5 folds. In all 5 
folds, the averages DSC of SAFNet are 79.46 ± 4.63%, 
78.82 ± 7.97%, 81.32 ± 3.45%, 80.56 ± 5.47%, and 
80.83 ± 3.48%, with a mean DSC of 80.32 ± 5.00%. These 
results indicate that SAFNet exhibited high stability in 
the 5 folds. Specifically, the mean DSC values of SAFNet 
showed high consistency and stability in each fold. For 
all 17 spinal structures, SAFNet also performed the best, 
indicating that the model is excellent in accuracy and 
reliability in spinal segmentation. These results provide 
strong support for the practical application of SAFNet.

Based on the DSC results, SAFNet outperformed 
3D DeepLabV3 in all but Fold_3. In terms of standard 
deviation, SAFNet had the highest standard deviation 
in Fold_2, reaching 7.97%. However, the average stand-
ard deviation of all five models in Fold_2 reached 8.38%. 
Additionally, the average DSC value of the five models in 
Fold_2 (only 76.64%) is the lowest among the five training 
sets. The inter-class difference in the MRI in Fold_5 is the 
smallest, and its standard deviation (3.46%) is the low-
est among the five training sets. Furthermore, the aver-
age DSC value of the five models in Fold_5 is the highest 
among the five training sets, reaching 80.12%. These find-
ings suggest that the inter-class difference in the MRI 
in Fold_2 is too large to be suitable for model training, 
while the inter-class difference in the MRI in Fold_5 is 
the smallest. These conclusions also indirectly prove that 
the five-fold cross-validation has an excellent judgment 
effect on the rationality of dataset distribution. Moreover, 
the results of the five-fold cross-validation demonstrate 
that SAFNet is capable of achieving superior segmenta-
tion results under various different distribution datasets.

Ablation experiments
In this research, SAFNet consists of five components, and 
we conducted a series of ablation experiments to evalu-
ate the impact of different methods have on the results. 
We used mDice as the evaluation metric, and the results 
of the ablation experiments are shown in Table  2. First, 
we used the Feature extraction network model as the 
Base model. The mDice score of the Basic model was 
77.15 ± 7.63%, which served as a baseline for subsequent 
experiments. Next, we introduced the ASPP (Atrous 
Spatial Pyramid Pooling) module into the Basic model. 
The experimental results demonstrated that the model 
using the ASPP module achieved an mDice score of 
81.12 ± 5.20%, exhibiting significant improvement com-
pared to the Base model. Then, we tried Multiscale fusion 
by applying it to the Base model. The experimental results 
showed that the Base model with Multiscale fusion 
achieved an mDice score of 80.53 ± 4.78%. Finally, we 
embedded the Self-attention mechanism method into the 
Base model. The results suggested that the model using 
the Self-attention mechanism method reached an mDice 
score of 79.76 ± 4.96%. Finally, we retrained SAFNet. The 
results showed that SAFNet achieved an mDice score of 
81.37 ± 3.68% that further exceeds the other methods.

In summary, the ablation experiments compared and 
validated the effectiveness of introducing the ASPP, 
Multiscale fusion, and Self-attention mechanism meth-
ods in improving segmentation accuracy, demonstrating 
the superiority of our proposed methods in this regard. 
These experimental results indicate that our method has 
significant advantages in segmentation performance for 
this task and can serve as a basis for further research and 
applications.

Discussion
Five sets of images are randomly selected from the vali-
dation set and are presented in Fig.  9 for comparative 
purposes. It is noteworthy that SAF achieved the high-
est DSC in each image set. Images in the figure include 
the initial MRI, the segmentation results of 3D UNet, 
3D ResUNet, 3D DeepLabv3, CFNet, SAFNet, and the 
ground truth.

In the first set of results, SAFNet accurately distin-
guished each vertebra structure, but due to its balance 
between over-segmentation and under-segmentation, it 
failed to fully reflect the convexity and concavity edges of 
the vertebral bodies in some areas, such as the edge of L5. 
Moreover, in the sacrum of the S section, SAFNet could 
not depict the intervertebral space of the sacral vertebrae 
like 3D DeepLabv3 or 3D ResUnet. In the second set of 
results, SAFNet reached a good balance between over-
segmentation and under-segmentation, but still lagged 
behind 3D ResUnet in the depiction of some details. 

Table 2 Ablation experimental results for SAFNet

Methods mDice (%)

Base 77.15 ± 7.63

Base + ASPP 81.12 ± 5.20

Base + Multiscale fusion 80.53 ± 4.78

Base + Self‑attention mechanism 79.76 ± 4.96

(Ours)SAFNet 81.37 ± 3.68
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The third set of results is the worst among all MRI rec-
ognition results. ResUNet, UNet and CFNet produced 
confused category segmentation results, and all three 
segmentation networks failed to correctly segment T10 
and T11. However, SAFNet had better overall segmenta-
tion outcomes, and 3D DeepLabv3 performed similarly 

to SAFNet. In the fourth set of results, UNet made rec-
ognition errors of T10, T10/T11, T11, and almost all 
right vertebral bodies. 3D ResUnet failed to recognize the 
T10 vertebra. 3D DeepLabv3 and CFNet had recognition 
defects on T12 and L1. SAFNet could correct the manual 
delineation errors of T10 and L4 but could not correctly 

Fig. 9 SAFNet has the ability to enhance the differentiation of each vertebra and intervertebral disc. SAFNet is designed to extract and learn 
semantic features from the input medical images, which can effectively distinguish different anatomical structures within the spine. Each row 
in the figure represents the middle sagittal slice of a subject. (SAFNet denotes scene aware fusion network; BG denotes background; MRI denote 
magnetic resonance imaging)
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complete the right sacral vertebrae. Although part of the 
outline was depicted, it was far from a complete outline. 
Finally, in the fifth set of results, ResUNet made classi-
fication recognition errors, while Unet and CFNet had 
serious missing problems in the recognition of T11. In 
comparison, SAFNet produced more favorable results on 
the T12 vertebra, while 3D DeepLabv3 did better in L4 
and L3 recognition.

Through analyzing the automated and visual segmenta-
tion outcomes, it is apparent that SAFNet’s performance 
in segmentation details and sacral vertebrae segmenta-
tion is inferior to that of 3D DeepLabv3 and ResUNet. 
However, SAFNet is the only model that did not make 
any errors in category segmentation, demonstrating high 
overall accuracy and stability. Despite SAFNet’s inferior 
performance in certain details and sacral vertebrae seg-
mentation compared to other models, its remarkable 
overall accuracy and stability in practical applications 
make it a promising vertebral segmentation model.

Doctors require extensive image reading experience 
to make a diagnosis in practical radiology examinations. 
The diagnosis of orthopedics relies not only on image seg-
mentation but also on data such as vertebral body length, 
angle, and displacement distance [22]. Collecting this data 
usually requires identifying key points in the anatomi-
cal structure [23], which is completed through relevant 
mathematical calculations. However, certain deviations in 
each positioning may occur due to differences in doctors’ 
cognition and other factors, making it difficult to establish 
uniform standards for doctors. In contrast, SAFNet has 
a unified standard and high stability, ensuring consistent 
segmentation and avoiding these problems.

Stability is a critical factor in evaluating the perfor-
mance of spine segmentation models. A good segmen-
tation model can effectively distinguish anatomical 
structures, and consequent accurate positioning can 
improve the accuracy of diagnosis data.

In view of the foregoing, SAFNet aims to pursue higher 
stability and overall accuracy, even though there is still room 
for improvement in some details of spine segmentation.

Conclusion
This research proposes an accurate and stable deep learn-
ing SAFNet for spine analysis. SAFNet utilizes a scene-
aware fusion network to address the challenges posed by 
small inter-class differences, large intra-class differences, 
and the computationally intensive nature of high-dimen-
sional 3D spine MRI, while also improving segmenta-
tion accuracy. Results demonstrate the effectiveness of 
the proposed method and its potential for improving the 
accuracy of radiological diagnosis.

Abbreviations
MRI  Magnetic resonance imaging
SAFNet  Scene aware fusion network
ASPP  Atrous spatial pyramid pooling
MSD  Mean surface distance
DSC  Dice similarity coefficient
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