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Abstract 

Background Imaging of in vitro neuronal differentiation and measurements of cell morphologies have led to novel 
insights into neuronal development. Live‑cell imaging techniques and large datasets of images have increased 
the demand for automated pipelines for quantitative analysis of neuronal morphological metrics.

Results ANDA is an analysis workflow that quantifies various aspects of neuronal morphology from high‑throughput 
live‑cell imaging screens of in vitro neuronal cell types. This tool automates the analysis of neuronal cell numbers, 
neurite lengths and neurite attachment points. We used chicken, rat, mouse, and human in vitro models for neuronal 
differentiation and have demonstrated the accuracy, versatility, and efficiency of the tool.

Conclusions ANDA is an open‑source tool that is easy to use and capable of automated processing from time‑
course measurements of neuronal cells. The strength of this pipeline is the capability to analyse high‑throughput 
imaging screens.
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Background
One of the defining characteristics of the central nerv-
ous system is the neuronal interconnectivity which facili-
tates the cell-to-cell communication required for normal 
brain function [1]. Establishment of neuronal networks 
in the developing brain are constituted by neuronal 
connections and can be influenced by the surround-
ing glia [2]. Neural development is a spatiotemporally 

fine-tuned biological process that spans the genesis of 
neurons to the maturation of functional neural tissues. 
The differentiation of neural cells is composed of steps 
such as cellular proliferation, neurite extension, neurite 
branching, synaptogenesis, and refinement of connec-
tions [3]. Modelling neuronal differentiation in a dish 
can provide new insights into how these connections 
are formed and altered. Many in  vitro neuronal mod-
els are in use for genetic and pharmacologic screens 
such as neuronal differentiation cultures of mouse and 
human embryonic stem cells, induced pluripotent cells, 
neuronal stem cells, immortalized tumour cells (human 
neuroblastoma cells SH-SY5Y), NT2 human embryonal 
carcinoma cells, PC12 rat pheochromocytoma cells, and 
chicken and rodent primary neuronal cultures [4–15]. 
When microscopy is applied in these studies, the focus 
has been on changes to different morphologic parame-
ters of neuronal cells, often in a high-throughput manner 
[16–24]. The use of label-free time-course phase con-
trast microscopy has increased our understanding on the 
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rise, development, and maturation of neuronal networks 
without being confounded by factors such as phototox-
icity [23, 25, 26]. Moreover, live-cell imaging with high 
spatial and temporal resolution has resulted in a massive 
increase in data volume and complexity [27, 28]. Image 
processing of large datasets from high throughput imag-
ing platforms generally involve many steps of image pre-
processing, segmentation, phenotype quantification and 
subsequent analysis [29, 30]. This stresses the need for 
software applications for large image data sets and auto-
mated approaches for reproducibility.

We have developed ANDA, an open-source tool for 
automated high-throughput image analysis of in-vitro 
neuronal cell cultures. ANDA is a desktop application 
built with TAURI that uses Python 3 scripts for data han-
dling and function-call execution, summoning ImageJ 
functions from Fiji [31–33]. ANDA’s main advantage 
is that it offers a graphical user interface that makes it 
easier to analyze phase contrast images with ImageJ, a 
process which would otherwise require extensive serial 
batch macro scripting that would have to be modified on 
a case-by-case basis.

We show that ANDA can quantify various metrics 
of three neuronal cell models with distinct differences 
in morphologies: chicken cerebellar granule neurons 
(CGNs), mouse primary neurons, neuronally differen-
tiating rat PC12 cells (PC12Ns), human neuroblastoma 
SH-SY5Y cells (SH-SY5Ys) and pre-terminally neuronal 
differentiated human-derived embryonal carcinoma 
NTERA2 cells (NT2Ns). Decisive metrics in neuronal 
morphology, particularly cell bodies, neurites and neurite 
attachment points are retrieved and reproducibly quanti-
fied, either at single time points or in time series. ANDA 
is open source under the MIT license and is available on 
GitHub (https:// github. com/ Eskel andLab/ ANDA).

Implementation
Image analysis of neuronal cell types
ANDA is a tool that can measure quantity, size and 
shape of cell bodies, neurites, and neurite attachment 
points from segmented images. Furthermore, ANDA 
fully automates image analysis and output data sum-
marization (Fig. 1). Prior to quantification, ANDA can 
be used to threshold raw images and apply different 
algorithms from Fiji [31] for segmentation (Additional 
file  1: Table  S1). The pipeline also includes the option 
of using pre-segmented images as input. After thresh-
olding and watershed algorithms [34] are implemented, 
ANDA identifies cell bodies and neurites based on seg-
mented images. This measurement requires customi-
zation of the size and circularity of the cell bodies and 
neurites for the neuronal cell type of interest (Addi-
tional file 1: Table S2). Sobel edge detection is applied 

to identify the neurite attachment points and all output 
data is summarised in csv-files.

Workflow
ANDA’s workflow is designed to be straightforward 
and easy to customize for the user. The downstream 
image analysis parameters are set using a graphical user 
interface. Before automated image analysis, settings 
for cell line and neurite aspect ratio inclusion thresh-
old have to be defined as input parameters. The images 
of CGNs, mouse primary neurons, NT2Ns, SH-SY5Ys 
and PC12Ns are successively processed and analysed 
in Fiji [31] and the raw output saved in csv-files. After 
completion of the image analysis, mean values of each 
selected analysis metric for each image are summarized 
into separate csv-files.

Quantification of neuronal morphological metrics
ANDA presents the option to threshold images from 
multiple global thresholding algorithms available in Fiji 
[31] (Additional file  1: Table  S1). In addition, the user 
can choose to apply a watershed algorithm to segment 
the images even further or use pre-segmented images 
as input and thereby skip a redundant segmentation 
step altogether. Some cell types such as the human 
pre-terminally differentiated NT2Ns exhibit contrast-
levels that are too low to be reliably distinguished from 
background using standard thresholding methods, 
necessitating a separate segmentation-step of Weka 
segmentation. Weka segmentation is an unsupervised 
trainable machine learning algorithm that is included in 
Fiji, and which can improve the delineation of low-con-
trast objects from background, given proper training 
(Additional file 1: Figure S1) [35]. Following segmenta-
tion, the quantity, size and shape of cell bodies, neur-
ites and neurite attachment points, are measured using 
built-in features in Fiji [31]. Cell bodies are isolated 
from background by applying image thresholding fol-
lowed by a watershed algorithm. Similarly, neurites can 
be retrieved by isolating the motifs from background 
with thresholding and watershed algorithm. Cell bod-
ies and neurites are quantified by identifying motifs 
with custom-set size and circularity criteria specified 
for each cell type (Additional file 1: Table S2). Neurite 
attachment points, a collective term for neurite trunks 
and neurite terminal ends, are retrieved by highlight-
ing the edges of the neurite outlines with Sobel edge 
detector after thresholding and watershed algorithm, 
and thereafter isolating the overlap between cell body 
outlines and neurite outlines by colour inversion and 
image multiplication.

https://github.com/EskelandLab/ANDA
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Fig. 1 A flowchart of ANDA. Raw phase contrast images are segmented prior to identification and analysis of cell bodies or neurites. The mapping 
of cell bodies and neurites yield results of their own, or their outlines can be used to identify neurite attachment points. This is done by applying 
Sobel edge detection on the neurite outlines, followed by colour inversion of cell body outlines and neurite edges. Thereafter, the overlap 
between cell bodies and neurites are determined by image multiplication. These overlaps are quantified as neurite attachment points. The data 
is summarized in different csv files
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Availability and set‑up
ANDA uses brightfield images from in  vitro neuronal 
cultures stored on disk and generates csv- files from the 
analysis. To be able to run ANDA download or git clone 
https:// github. com/ EskelandLab/ANDA. For set up, 
example images generated and analysed in the current 
study can be downloaded from NeuroImaging Tools & 
Resources Collaboratory (NITRC) (https:// www. nitrc. 
org/ proje cts/ anda_ neuro nal). Moreover, example output 
data for analysis has been made available for user-friendly 
verification of ANDA set-up.

Results
Qualitative measurement assessment
Automated quantification of neuronal metrics from 
high-throughput experiments is the main purpose of our 
pipeline (Fig. 1). The quality of ANDA’s ability to quan-
tify neuronal differentiation metrics was assessed using 
outlines of identified structures in freshly plated and 
in vitro day 3 CGN cells (Fig. 2), as well as freshly plated 
and differentiated PC12Ns (Additional file 1: Figure S2), 
differentiated NT2Ns (Additional file 1: Figure S3), neu-
roblastoma SH-SY5Y (Additional file  1: Figure S4) and 
in  vitro day 8 E16 primary mouse neurons (Additional 
file  1: Figure S5). Details of the cultivation of these five 
cell types are described in Additional file information [18, 
36, 37]. To obtain phase contrast images of the cells we 
used the live-cell imaging platforms  IncuCyte® ZOOM 
for the CGN and PC12N cells, and IncuCyte® S3 for 
the NT2N, SH-SY5Y and primary mouse neuronal cells 
(Additional file methods). Generally, freshly plated cells 
are spherical and do not exhibit neurite outgrowth until 
proper attachment to the growth vessel. ANDA consist-
ently identified cell bodies in freshly plated chicken cells 
and in  vitro day 3 (Fig.  2B, F) and mouse primary neu-
rons in  vitro day 8 (Additional file  1: Figure S5B). This 
trend was also observed in the PC12N, NT2N and SH-
SY5Y models (Additional file  1: Figures  S2B, 2E, 3B, 3E 
and 4B), although the NT2N cell bodies tend to have a 
more oblong shape.

ANDA identified CGN neurite structures at in  vitro 
day 3 (Fig.  2G), with some artefactual identification of 
neurites in freshly plated cells (Fig.  2C). Similarly, neu-
rite structures were identified in  vitro day 8 mouse pri-
mary neurons (Additional file  1: Figure S5C). ANDA 
also detected neurite structures in three days differenti-
ated PC12N cells but not in freshly plated cells (Addi-
tional file  1: Figures  S2C, F). Some neurite structures 
were detected in the freshly plated NT2N cells with a 
clear increase after three days of differentiation (Addi-
tional file 1: Figures S3C, F). For SH-SY5Y cells cultivated 
for two days, some neurite structures were detected as 

expected for a neuronal type morphology [37]. The iden-
tification of neurite attachment points relies on identified 
neurite and cell body structures in the image. In freshly 
plated CGN and NT2N cells, ANDA falsely detected 
some neurites that also resulted in detection of false posi-
tive neurite attachment points (Figs.  2D and Additional 
file  1: Fig. S3C). True positive identification of neurite 
attachment points was more consistent at in vitro day 3 
(Fig.  2H), NT2N day 7 neuronal differentiation (Addi-
tional file  1: Figure S3F) and mouse primary neurons 
(Additional file 1: Figure S5C). Based on these observa-
tions, we show that ANDA’s ability to quantify neuronal 
differentiation metrics improves with neuronal morpho-
logical development.

Measurement of neuronal morphology in cell models 
across species
We next used ANDA to measure the morphological 
dynamics in chicken CGN, rat PC12N and human NT2N 
cells. All three models exhibit morphologies applicable 
for quantification of neuronal metrics. CGNs and NT2Ns 
exhibited a decrease in cell body count throughout dif-
ferentiation, whereas PC12Ns displayed an initial slight 
increase up to 50 h followed by a decrease (Fig. 3). The 
drop in PC12Ns after 50 h can be explained by the devel-
oped dependency to nerve growth factor (NGF), and the 
subsequent depletion thereof in the culture media. Mean 
neurite lengths remained stable with a slight increase for 
all three models (Fig.  3A, C, E). Overall, the number of 
cell bodies decreased in the CGN model, however there 
may also be some cell bodies that cluster together that is 
difficult to distinguish with an automated workflow. The 
NT2N model exhibited decrease in numbers of cell bod-
ies whereas cell bodies for PC12Ns showed an increase 
and later decreased towards the end of the experiment.

We observe that CGN cells developed longer and fewer 
neurites over time whereas the NT2N cells extended 
more and longer neurites (Fig.  3A–D). For the PC12N 
cells we did not detect a substantial difference, which 
may be because naïve PC12 cells have neurite-like filo-
podial protuberances that can be difficult to differentiate 
from neurites using our automated workflow (Fig. 3E–F). 
As fewer cells and neurites indicate fewer cell-to-neurite 
connections, the frequency of neurite attachment points 
also decreased in the CGNs. The number of neurite 
attachment points was slowly decreasing and stabiliz-
ing after approximately 50 h in the CGN cells (Fig. 3A). 
Similarly, the number of neurite attachment points 
slowly decreased but after approximately 120 h followed 
by a steady increase in the differentiating NT2N cells 
(Fig. 3C). The number of neurite attachment points curve 
for PC12N cells had a rapid increase followed by stabi-
lization and decrease (Fig. 3E). Both PC12N and NT2N 

https://github.com/
https://www.nitrc.org/projects/anda_neuronal
https://www.nitrc.org/projects/anda_neuronal
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Fig. 2 Identified cell structures from ANDA image analysis of CGN cells. A Phase contrast image of freshly plated cells. B Outlines of identified cell 
bodies in freshly plated cells. C Outlines of identified neurites in freshly plated cells. D Outlines of identified neurite attachment points in freshly 
plated cells. E Phase contrast of CGN cells at day in vitro (DIV) 3. F Outlines of identified cell bodies at DIV 3. G Outlines of identified neurites at DIV 3. 
H Outlines of identified neurite attachment points at DIV 3. Scale bar is 100 µm
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Fig. 3 Analysis of neuronal differentiation metrics in CGNs, NT2Ns and PC12Ns. Time course measurements of neuronal differentiation in A 
CGNs, C NT2Ns and E PC12Ns. Sample phase contrast images of B differentiating CGNs (at 1.5, 25.5, 49.5 and 85.5 h) D Weka segmented images 
of differentiating NT2N cells (at 0, 60, 120 and 190.5 h) and F differentiating PC12Ns (at 1.5, 25.5, 49.5 and 73.5 h). Scale bar is 200 µm, px represents 
pixels
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cells presented a low number of neurite attachment 
points compared to CGNs.

Quality assessment by manual quantification
To verify the image analysis quality of ANDA, we have 
used a selection of images of CGNs at early and late 
stages after seeding in  vitro and compared the quanti-
fied output from ANDA with manual measurements 
(Fig.  4). The comparison between manual consensus 
quantification [38] and ANDA’s ability to quantify cell 
bodies indicates that ANDA tends to underestimate the 
true number of cell bodies in each image. However, both 
analyses showed the same trend of decreasing number 
of cell bodies over time (Fig. 4A). We next compared the 
neurite length analysis output from ANDA with manual 
measurements and the commercially available  IncuCyte® 
NeuroTrack Software Module (NeuroTrack) provided by 
Essen BioScience (Sartorius). All three analysis meth-
ods showed a similar trend in increasing mean neur-
ite lengths over time, but both computational methods 
tended to underestimate the neurite lengths, especially at 
the later time points of CGN compared to manual counts 

(Fig.  4B). Next, we used a selection of images of early 
and late in vitro differentiated NT2Ns and compared the 
quantified output from ANDA with manual consensus 
measurements of cell bodies and neurites (Fig.  4C–D). 
The trends were similar to manual annotation of CGNs, 
ANDA underestimates the true NT2N cell numbers and 
neurite lengths.

Comparison of cell body analytics between ANDA 
and NeuroTrack could not be performed quantitatively, 
as NeuroTrack quantifies cells into clusters instead of 
attempting to delineate individual cells (Fig.  5). Judg-
ing qualitatively, both ANDA and NeuroTrack showed 
a tendency to detect cell bodies with minor differences 
to the manual measurements in the early and mid-stage 
time points (Fig. 5A, B). At the latest time point, Neuro-
Track identified the density of cell bodies more precisely 
than ANDA (Fig. 5C), while yielding more false positives. 
The number of neurite structures was underestimated by 
both computational methods especially at the mid-stage 
time point (Fig. 5B). Although neurite counts and lengths 
were underestimated in comparison to the manual quan-
tifications thereof, both ANDA and NeuroTrack tended 

Fig. 4 Comparison of analysis with ANDA and manual quantification of CGN and NT2N cells. A Comparison of output after analysis of CGN 
cell body counts with ANDA and manual quantification. B Comparison of output after analysis of CGN neurite lengths with ANDA, manual 
measurements and NeuroTrack. C Comparison of output after analysis of cell body count with ANDA and manual quantification three randomly 
selected areas of three differentiation time‑points (0, 72 and 120 h) of NT2Ns. D Comparison of output after analysis of neurite lengths with ANDA 
and manual measurements of NT2Ns. Manual measurements for each time‑point are presented as an average of two consensus counts of n = 2 
randomly selected images at three stages of CGNs in vitro differentiation (DIV1, 2 and 3) and an average of two consensus counts of n = 3 randomly 
selected images per time‑point (0, 72 and 120 h) of NT2N cell differentiation
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to correctly identify oblong structures as neurites during 
the latest time point in CGN development (Fig. 5C).

Time‑course analysis with ANDA
To better demonstrate the utility of ANDA for larger 
quantitative datasets, we set up time-course treatments 
with a low dose of cytosine arabinoside (AraC) in CGNs 
and NT2Ns (Fig.  6). AraC is a mitotic inhibitor often 

used as an inhibitor of glial cell proliferation in neuronal 
cell cultures [18]. AraC treatment is therefore expected to 
impact number of cell bodies over time. We performed 
measurements of eight areas from three individual wells 
during a time-course of every 12  h for a total of 132  h 
for CGNs (Fig.  6A–C) and every 6  h for a total of 66  h 
for NT2Ns (Fig. 6D–E). We observed a decrease of CGN 
cell number from 60 h upon AraC treatment compared 
to control. This was concomitant with increase in CGN 
neurite lengths and reduction in neurite attachment 
points. For NT2N no effect of AraC was observed for 
all three metrices, likely due to the measurement time 
course being too short.

We have previously shown that ANDA is able to quan-
tify the impact CGN and NT2N neurite lengths and neu-
rite attachment points upon treatment with increasing 
doses of the analgesic paracetamol (acetaminophen) [18]. 
After 72 h, lower doses of paracetamol had no significant 
effect on NT2Ns, whereas the highest dose showed an 
effect on neurite length and neurite attachment points.

Discussion
ANDA is an image analysis tool particularly useful for 
analysis of large datasets from live cell high-throughput 
neuronal image time-series and drug exposures [18]. The 
comparison of the metrics of the five different in  vitro 
cell models suggests that the numerical output from 
analysis with ANDA is relatively consistent with what is 
observed in the images. In comparing ANDA to Neuro-
Track, the two methods yielded relatively similar outputs. 
However, whereas NeuroTrack averages cell body counts 
into clusters, ANDA quantifies individual soma, includ-
ing somatic characteristics such as size and shape, yield-
ing a much higher granularity of data. The discrepancies 
between the numerical output and what is observed in 
the images can to a large degree be attributed to identifi-
cation of false positive structures such as dead cell debris 
or structures falsely quantified due to over segmentation 
of the images. As with any automated method, ANDA 
comes with some limitations.

These limitations are mostly dependent on the qual-
ity of the data, with higher quality reducing the possibil-
ity of errors by image pre-processing and segmentation. 
Therefore, we have outlined some recommendations for 
image analysis to improve the quality of the output. For 
any new cell type to be analysed, we recommend doing 
a manual consensus quantification to set up the ANDA 
analysis. The experimental setup should ensure that cell 
densities do not become excessively high. As ANDA is 
not performing uncertainty assessment, we recommend 
the use of images with notable contrast between cells and 
background. If low-contrast cells are used, as described 
here for NT2Ns, we strongly recommend Weka-based 

Fig. 5 Mask comparisons between manual measurements, ANDA 
and NeuroTrack. From left to right: Phase contrast images, cell bodies, 
neurites, mask overlay. From top to bottom: manual measurements, 
ANDA, NeuroTrack. A CGNs day in vitro (DIV) 1; B DIV 2 and C DIV 
3. Colours in the “overlay” panels represent cell bodies (yellow) 
and neurites (magenta)



Page 9 of 11Wæhler et al. BMC Neuroscience           (2023) 24:56  

pre-segmentation prior to analysis with ANDA [35]. At 
too high cell densities ANDA is not able to correctly seg-
ment cells from each other or the background. Further-
more, ANDA is not able to distinguish individual neurites 
in fasciculated neurite bundles and will only retrieve the 
length of the identified oblong objects, regardless of its 
width. False positive neurites can be identified by com-
paring image outlines with the raw data. ANDA also 
includes the option to set an aspect ratio threshold for 
which oblong structures are regarded as false positive 

or not. Some primary cells, glial cells and neuronal cells 
cannot be clearly distinguished by phase contrast alone. 
The user can, however, isolate granule cells from the 
images based on criteria such as size and shape.

We have shown that ANDA was able to capture the 
overall trend from the images represented here, albeit 
with a subtle over- or under-estimation of the number 
of neuronal metrics (Fig.  3). To address this, we have 
included an option to remove falsely identified neur-
ites from the final output based on neurite aspect ratio 

Fig. 6 Time‑course analysis of cell bodies, neurite length and attachment points in normal culture media and upon 10 µm AraC treatment 
by ANDA. A CGN cell body count, B CGN neurite length, C CGN neurite attachment points, D NT2N cell body count, E NT2N neurite length and F 
NT2N neurite attachment points. NT2N images were WEKA segmented before analysis. Each point represents average of three measurements 
and error bars are standard deviation. Px represents pixels
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in ANDA. This can be achieved by setting a certain 
threshold. All neurite structures with an aspect ratio 
below this will be regarded as false positive and there-
fore not included in the final output when mean neur-
ite length and number of neurite attachment points are 
summarized.

Conclusion
We have demonstrated that the open-source tool ANDA 
is suitable for analysis of high-throughput images of dif-
ferentiating neuronal cells from human, mouse, rat, and 
chicken in  vitro models. ANDA can effectively analyse 
time-series image sets of differentiating neuronal cells 
with vastly differing morphologies. To that end, we have 
shown that ANDA is an accurate, versatile, efficient, and 
user-friendly tool for quantification of neuronal morpho-
metrics in different model systems.

Project name ANDA: An open-source tool for auto-
mated image analysis of neuronal differentiation.

Project home page https:// github. com/ Eskel andLab/ 
ANDA and https:// www. nitrc. org/ proje cts/ anda_ neuro 
nal/

Operating system(s) Linux, MacOS, Windows.
Programming language Python, shell, HTML, CSS, 

JavaScript, Rust.
License MIT.
Any restrictions to use by non-academics MIT.
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