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Abstract 

Sensory processing in the auditory brainstem can be studied with auditory brainstem responses (ABRs) across species. 
There is, however, a limited understanding of ABRs as  tools to assess the effect of pharmacological interventions. 
Therefore, we set out to understand how pharmacological agents that target key transmitter systems of the auditory 
brainstem circuitry affect ABRs in rats. Given previous studies, demonstrating that Nrxn1α KO Sprague Dawley rats 
show substantial auditory processing deficits and altered sensitivity to GABAergic modulators, we used both Nrxn1α 
KO and wild-type littermates in our study. First, we probed how different commonly used anesthetics (isoflurane, 
ketamine/xylazine, medetomidine) affect ABRs. In the next step, we assessed the effects of different pharmacological 
compounds (diazepam, gaboxadol, retigabine, nicotine, baclofen, and bitopertin) either under isoflurane 
or medetomidine anesthesia. We found that under our experimental conditions, ABRs are largely unaffected 
by diverse pharmacological modulation. Significant modulation was observed with (i) nicotine, affecting the late ABRs 
components at 90 dB stimulus intensity under isoflurane anesthesia in both genotypes and (ii) retigabine, showing 
a slight decrease in late ABRs deflections at 80 dB stimulus intensity, mainly in isoflurane anesthetized Nrxn1α KO rats. 
Our study suggests that ABRs in anesthetized rats are resistant to a wide range of pharmacological modulators, which 
has important implications for the applicability of ABRs to study auditory brainstem physiology.

Keywords Auditory brainstem responses, Pharmacological modulations, Neurexins, Non-invasive brain technology, 
Neurophysiology

Introduction
Auditory brainstem responses (ABRs), also known as 
brainstem auditory evoked potentials, are electrical 
potentials commonly evoked by click sounds, which can 
be measured non-invasively and that speak to synaptic 
transmission within the auditory brainstem circuits. 

ABRs are widely used for assessing hearing thresholds 
[1], intraoperative neuromonitoring [2], screening for 
sensory abnormalities in neurodevelopmental disorders 
[3], or testing ototoxicity in drug development [4].

In both humans and rodents, ABRs consist of distinct 
deflections (also referred to as ‘waves’), that are generated 
by the activation of specific neuronal nuclei within the 
auditory pathway [5–7]. We can differentiate between 
four to five waves, with a temporal separation of about 
0.8–1.0  ms each [8]. Wave I is generated by the distal 
part of the auditory nerve (AN). Wave II reflects the 
projection of the cochlear nucleus (CN); Wave III is 
generated by the superior olivary complex (SOC), wave 
IV by the lateral lemniscus and inferior colliculus (IC), 
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and lastly wave V reflects signal transmission from the 
thalamus to the auditory cortex (AC) [9–11].

The neurotransmitter systems in the auditory 
brainstem circuitry are mainly glutamatergic, 
GABAergic, glycinergic, and cholinergic [12–14]. The 
ventral part of the cochlear nucleus sends glutamatergic 
projections to the lateral superior olive (LSO), the medial 
superior olive,  and the medial nucleus of the trapezoid 
body (MNTB), while the dorsal cochlear nucleus send 
glutamatergic projections to the IC. MNTB neurons 
make glycinergic inhibitory synapses with the LSO 
neurons. SOC neurons send glutamatergic projections 
to the lateral lemniscus and the IC, targeting the 
medial geniculate body in the thalamus, which sends 
glutamatergic projections again to the AC [12, 13]. The 
descending auditory projections start from the AC and 
terminate in subcortical auditory centers, such as the IC 
in the auditory brainstem [15, 16].

While ABRs have been used extensively to assess 
auditory brainstem physiology [17] and its abnormalities 
[18, 19], the capacity of ABRs to be modulated by 
pharmacological agents remains poorly understood. 
Therefore, we set out to test the effects of various 
pharmacological modulators on rodent ABRs. Here we 
used acute pharmacological treatments prior to the ABR 
measurements. We tested the effects of enhancing the 
GABAergic neurotransmission in the auditory brainstem 
via injecting diazepam (a γ2-containing  GABAA receptor 
enhancer), gaboxadol (a δ-containing   GABAA receptor 
agonist) or baclofen (a  GABAB receptor agonist). Both 
 GABAA and  GABAB receptors are widely expressed along 
the different nuclei in the auditory brainstem [20–24]. 
A previous study emphasized the role of baclofen and 
diazepam as potent modulators of both the excitability 
of neurons in the ascending auditory pathway and 
the processing of auditory information by IC neurons 
[25]. Moreover, we used bitopertin (a non-competitive 
selective inhibitor of glycine transporter 1 (GlyT-1) 
[26]) to investigate the role of increased glycinergic 
neurotransmission on ABRs. GlyT-1 is one of the two 
glycine transporters family, which work as an endogenous 
regulator of glycine, but also play a crucial role in 
maintaining glycine neurotransmission homeostasis 
and modulating glycine levels at N-methyl-D-aspartic 
acid (NMDA) sites [26]. GlyT-1 is widely expressed in 
neuronal and glial cells [27], among the different brain 
regions including the auditory brainstem [28]. We also 
used retigabine (a broad  Kv7 enhancer), which is well 
known to increase neuronal hyperpolarization [29] 
and thus may reduce synaptic outputs in the auditory 
brainstem by acting on the  Kv7.4 channels of the outer 
hair cells in the inner ear [30]. In addition, we used 
nicotine, a nicotinic acetylcholine receptor (nAChR) 

agonist, to inhibit excitatory output of the outer hair cells 
in the cochlea [31].

Initially, we tested these compounds under 
the application of isoflurane, a frequently used 
anesthesia method for rodent ABRs [1]. In a second 
step, we also tested a subset of compounds under 
medetomidine anesthesia that may better preserve 
the dynamics of neural circuits and therefore could 
reveal compound effects different from those under 
isoflurane. Furthermore, by using three well-regarded 
anesthesia methods (isoflurane, ketamine/xylazine, 
and medetomidine), we compared the ABRs between 
Nrxn1α KO rats and wildtype littermates under the most 
frequently used anesthetic conditions. In humans, a 
2p16.3 (NRXN1) deletion is associated with intellectual 
disability, autism spectrum disorder, and schizophrenia 
[32]. Previously, we showed that auditory processing 
is substantially impaired in Nrxn1α KO rats, and that 
cortical auditory responses are impacted differently by 
GABAergic modulation compared to their wild-type 
littermates [33]. Therefore, the inclusion of Nrxn1α 
KO Sprague Dawley rats allowed us to test if functional 
alterations of auditory brainstem circuits could explain 
some of our previous results.

Materials and methods
Animals
Experiments were conducted on adult Nrxn1α KO rats 
and wild-type littermates (strain: Sprague Dawley (SD)-
Nrxn1 < tm1sage > bred by Charles River, France. Only 
male rats were used. Rats were housed in groups of two, 
in a temperature-controlled room on a 12  h light/dark 
cycle with ad libitum food and water. Overall, four animal 
cohorts have been used, since is not feasible to run all 
tests in a single cohort given limitations from age-effects 
and animal welfare perspective, as Table 1 shows.

Anesthesia
Isoflurane-based anesthesia started with inducing 
unconsciousness via isoflurane inhalation (Isofluran 
Baxter, Cat. no.: hdg9623, Baxter, GER), in a chamber 
filled with 5% isoflurane for 3  min and maintained 
throughout the ABR recordings at 2.5% isoflurane in 
medical air.

For medetomidine-based anesthesia, animals were first 
anesthetized via isoflurane inhalation (4% isoflurane for 
4 min), and then injected with a bolus of medetomidine 
(0.1  mg/kg, s.c., Dorbene, Graeub, CH), followed by 
1 min isoflurane inhalation at 4% to maintain anesthesia 
until the effect of medetomidine fully unfolded. Before 
starting the ABR measurements, isoflurane inhalation 
was stopped for 5 min to ensure isoflurane washout. At 
the end of the recording, Atipamezoli (0.1  mg/kg, s.c., 
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Alzane, Graeub, CH) was injected to reverse the sedative 
and analgesic effects of medetomidine. Ketamine-based 
anesthesia was performed by i.p injection of a ketamine/
xylazine mixture (80 mg/kg ketamine mixed with 5 mg/
kg xylazine, i.p., Ketasol 100 with Xylasol, Graeub, CH). 
ABR measurements were started 10 min after injection.

Pharmacology
Doses and pre-treatment times were chosen 
according to previously established pharmacokinetic/
pharmacodynamics profiles [33, 35–39]. Treatment 
conditions were randomized using a Latin-based square 
design (also referred to as “William’s design”), in which 
each animal received every compound (or vehicle) in 
a randomized fashion. The randomization controls for 
putative day-to-day variability and allows within-subject 
comparison strengthening statistical power, in line 
with previous neuropharmacological studies [33]. No 
blinding was performed. The duration of the washout 
phase between dosing was at least 48  h. The control 
condition was represented by the administration of an 
equal volume of the vehicle solution (0.9% saline + 0.3% 
Tween20: Cat. no.: 11332465001, Sigma-Aldrich, GER). 
Animals were injected with diazepam (3  mg/kg, Roche 
Pharmaceuticals, CH), gaboxadol (10  mg/kg, Cat. no.: 
T101, Sigma-Aldrich, GER), retigabine (3 mg/kg, Roche 
Pharmaceuticals, CH), nicotine (5  mg/kg, ( −) nicotine 
hydrogen tartrate salt, Cat. no.: SML1236, Sigma–
Aldrich, GER), baclofen (5  mg/kg, Cat. no.: B5399, 
Sigma–Aldrich, GER), bitopertin (10  mg/kg, Roche 
Pharmaceuticals, CH) or vehicle solution. Intraperitoneal 
injection was performed 15 min before starting the ABR 

measurements for all compounds, except for bitopertin, 
which reaches maximal exposures at around 60 min after 
application. Given the time necessary for the preparation 
(anesthesia, placing of the animal in to the recording 
device and positioning the electrodes) the actual ABR 
recordings happened about 30  min post-dosing (or at 
75 min in case of bitopertin).

Electrophysiological recording and acoustic stimulation
Prior to the ABR measurements, sound volume calibration 
was performed following the RZ6 Open Field Calibration 
Setup (Tucker-Davis Technologies, FL), including a 
signal conditioner and a 1/4-inch Prepolarized Free-field 
microphone (model nr. 480c02, ICP® SENSOR, PCB, NY, 
USA). The acoustic stimuli used in the ABRs assessment 
consisted of 512 click sounds, generated at 200  kHz 
sampling rate.  Each click sound  is a broadband mono-
phasic square wave signal (0.1 ms). The click sounds were 
presented at a rate of 21 clicks/s, at different sound levels 
(90, 80, 70, 60, 50, 40, 30, 20, 10  dB SPL), starting with 
the highest stimulus intensities, in line with established 
protocols [33, 40]. The ABR measurements were conducted 
in a sound-attenuating and electrostatically grounded 
chamber. Body temperature of anesthetized animals (see 
above) was maintained at  37◦ C using a thermic heating pad 
(Kent Scientific Corporation, CN, USA). Click sounds were 
generated with a multi-field speaker (MF1, Tucker-Davis 
Technologies, FL, USA) connected to a RZ6-A-1 input/
output processor (Tucker-Davis Technologies, FL, USA). 
The speaker was positioned 10 cm from the animal’s right 
ear. ABR signals were recorded with 13  mm subdermal 
needle electrodes (Cat. no.: NS-s83018-r9-10, Rochester, 

Table 1 Shows the different animal cohorts used according to each pharmacological treatment and anesthesia type in both wild-
type (WT) and Nrxn1α KO Sprague Dawley rats (KO). N/A: pharmacological treatment is not applicable

All procedures were approved by the Federal Food Safety and Veterinary Office of Switzerland (Basel) and conducted in adherence to the Swiss federal ordinance on 
animal protection and welfare, as well as according to the rules of the Association for Assessment and Accreditation of Laboratory Animal Care International and the 
ARRIVE guidelines [34]

Animal Cohort Anesthesia type Pharmacology Animal numbers Animal age

Group A Isoflurane Nicotine WT (N = 14), KO (N = 14) 20 weeks old

Bitopertin WT (N = 14), KO (N = 11)

Baclofen WT (N = 14), KO (N = 13)

Ketamine/xylazine N/A WT (N = 9), KO (N = 9) 25 weeks old

Group B Medetomidine Diazepam WT (N = 12), KO (N = 12) 25 weeks old

Bitopertin

Retigabine

N/A 27 weeks old

Isoflurane N/A

Group C Isoflurane Diazepam WT (N = 14), KO (N = 14) 20 weeks old

Gaboxadol

Group D Isoflurane Gaboxadol WT (N = 18), KO (N = 16) 20 weeks old

Retigabine
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Coral Springs, FL, USA), with the signal electrodes 
placed on the vertex and reference and ground electrodes 
placed under the ipsi- and contralateral ear, respectively, 
connected to a RA4PA preamplifier/digitizer and RA4LI 
low impedance head stage (Tucker-Davis Technologies, FL, 
USA). Signals were acquired using the following settings: 
12 kHz sampling rate, 5 kHz low pass, 100 Hz high pass, 
50  Hz notch, using the BioSigRZ software (version 5.5, 
TDT, FL, USA).

Euthanasia
At the end of the experimental producers, animals received 
terminal anesthesia; 150 mg/kg pentobarbital (Eskonarkon, 
Switzerland), i.p.,1:20 dilution with NaCl, followed by 
decapitation, after confirming a lack of reflexes by paw 
pinching.

Data processing and analysis
Data analysis was performed as previously described [33]. 
In brief, in a pre-processing step ABR data were normalized 
to its pre-stimulus baseline. Resulting ABR waveforms 
were statistically tested for differences between conditions 
(see Statistical testing).

Statistical testing
Statistical testing was performed with paired or unpaired 
cluster-based permutation tests (CBPT) depending on 
the condition, using custom Python scripts. In brief, first 
CBPT performs individual t-tests (two-tailed, significance 
level set to p < 0.05) for each data point. The resulting 
clusters are then tested for significance by comparing 
the summed t-values of the initial clusters with summed 
t-values of clusters obtained from permuted data (here, 
shuffling over the time domain) over many iterations 
(N = 1000 permutations, significance threshold: p < 0.05), 
thereby correcting for multiple comparisons. We 
visualize both cluster types (with permutation testing: 
black bars above graphs; and w/o permutation: grey bars, 
indicating statistical trends). Given that qualitatively 
no apparent outliers were present, no specific test was 
performed for outlier detection. No exclusion criteria were 
predetermined, and no animals were excluded from the 
statistical analysis. For one animal under one condition 
in the pharmacology study (nicotine, 5.0  mg/kg), missing 
vehicle data were input by averaging the respective data 
points of all other animals under this condition, to allow for 
paired analyses.

Results
Auditory brainstem responses are similar for adult 
Nrxn1α KO Sprague Dawley rats and wild‑type littermates 
under different anesthetics
First, we asked whether Nrxn1α KO Sprague Dawley rats 
show alterations in their ABRs compared to wild-type 
littermates. To mitigate the risk that putative genotypic 
differences are missed due to the effects of anesthesia, we 
performed ABR recordings under three different types 
of anesthesia. We found that under all conditions, ABRs 
of Nrxn1α KO animals largely resembled those of their 
wild-type littermates (Fig.  1 and Additional file  1: Figs. 
S1 and S2). Except for statistically significant differences 
in the very late components of the ABRs elicited at 
80  dB under medetomidine (Additional file  1: Fig. S2B; 
time window 5.4–6.5  ms, d = −  1.23, p = 0.028 and time 
window 7 – 8.5 ms, d = 1.12, p = 0.012).

ABRs are largely resistant to pharmacological modulators 
under isoflurane anesthesia
Next, we assessed how pharmacological agents that 
modulate distinct neurotransmitter systems impact 
ABRs in both wild-type (Fig.  2 and Additional file  1: 
Fig. S3) and Nrxn1α KO Sprague Dawley rats (Fig.  3 
and Additional file  1: Fig. S4). In our first set of 
experiments, we used isoflurane anesthesia, as it is 
arguably the most-widely used choice for rodent ABR 
measurements. In order to investigate the effects of 
increasing GABAergic neurotransmission, we tested 
diazepam at 3 mg/kg (a γ2-containing  GABAA receptor 
enhancer; Fig.  2A and 3A), gaboxadol at 10  mg/kg 
(α4/6δ-containing  GABAA receptor agonist; Fig.  2B 
and 3B) and baclofen at 5  mg/kg (a  GABAB receptor 
agonist; Fig.  2C and 3C). To augment glycinergic 
neurotransmission we used bitopertin at 10  mg/kg (a 
GlyT-1 inhibitor; Fig. 2D and 3D). We used retigabine 
at 3  mg/kg (a pan-Kv7 enhancer; Fig.  2E and 3E) to 
increase neuronal hyperpolarization and, therefore, 
to overall reduce synaptic outputs. Nicotine was 
used at 5  mg/kg (a nAChR agonist; Fig.  2F and 3F) 
in order to inhibit output of outer hair cells of the 
cochlea. Interestingly, we found that, compared to the 
vehicle control, none of the applied pharmacological 
agents clearly impacted ABRs in either wild-type or 
Nrxn1α KO Sprague Dawley rats. The only statistically 
significant effects were observed with nicotine on ABRs 
elicited at 90  dB and with retigabine on ABRs elicited 
at 80 dB. nicotine showed a modulation of the very late 
components of the ABRs in both wild-type (Fig.  2F; 
time window 5.4–6.25  ms time window, d = −  1.27, 
p = 0.037) and Nrxn1α KO Sprague Dawley rats 
(Fig.  3F; time window 6.6–7.9  ms; d = 0.97, p = 0.009), 
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while retigabine only affected ABRs of Nrxn1α KO 
Sprague Dawley rats (Additional file  1: Fig. S4C, time 
window 3.6–5.9 ms, d =− 0.84, p = 0.01).

ABRs are largely resistant to pharmacological modulations 
under medetomidine anesthesia
With the lack of pharmacological modulation observed 
under isoflurane, we next tested if ABRs could be 
modulated more clearly under medetomidine, a widely 
used anesthetic in functional imaging that is considered 
to preserve better network dynamics as compared to 
isoflurane or ketamine. To test this hypothesis, we 
focused on the three compounds diazepam (Fig.  4A 
and  5A), bitopertin (Fig.  4B and 5B) and retigabine 
(Fig.  4C and 5C). Like our observations under 
isoflurane, pharmacological modulation did not alter 
ABRs of both wild-type (Fig.  4 and Additional file  1: 
Fig. S5) and Nrxn1α KO Sprague Dawley rats (Fig.  5 
and Additional file  1: Fig. S6) under medetomidine. 
The only statistically significant difference was found 
for retigabine in wild-type animals, reducing the 
amplitude of late components of ABRs elicited at 
40  dB (Additional file  1: Fig. S5C; time window 3.8–
5.5 ms, d = -1.44, p = 0.012; and time window 5.6–7 ms, 
d = -1.68, p = 0.013).

Discussion
The current study explored the impact of different 
anesthetics and pharmacological tool compounds in 
wild-type and Nrxn1α KO Sprague Dawley rats and 
shows for the first time that rat ABRs are unaffected by 
diverse pharmacological modulators.

First, using three of the most widely used anesthetics 
for rodents, we confirmed that ABRs without additional 
pharmacological intervention are similar between adult 
Nrxn1α KO Sprague Dawley rats and their wild-type 
littermates. Our results align with our previous studies 
that probed ABRs in adult wild-type and Nrxn1α 
KO Sprague Dawley rats under isoflurane anesthesia 
only [33]. Our current study expands this finding by 
demonstrating the lack of genotypic differences also 
under ketamine/xylazine and medetomidine anesthesia. 
This finding is important, since previous studies 
showed that the choice of anesthesia (e.g., isoflurane 
vs. ketamine/xylazine) significantly affected ABR 
characteristics [41], raising the possibility that genotypic 
differences may be missed with just using one type of 
anesthesia with a specific mode of action. Isoflurane 
and ketamine/xylazine (the two most widely-used 
anesthetics for rodents ABRs [1]) share many molecular 
targets, including glycine receptors [42],  GABAA [42–
45] and  GABAB receptors [46, 47], glutamate receptors 

Fig. 1 Comparison of auditory brainstem responses between Nrxn1α KO Sprague Dawley and wild-type littermates rats. ABR waveforms 
across different stimulus intensities (90, 70, 50 dB) under A isoflurane, B ketamine/xylazine and C medetomidine anesthesia. Recordings 
from the WT are in blue (N = 12) and Nrxn1α KO in red (N = 12). Data displayed as mean ± SEM, was tested with unpaired CBPT. No robust significant 
differences were found between genotypes across anesthesia methods. Grey bars above the graphs indicate clusters of significant differences 
before CBPT-based correction for multiple comparisons, i.e., indicating statistical trends
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[48–50] (including NMDA receptors [51–53]), and 
nACh receptors [54, 55]. All these receptors are widely 
expressed in the brainstem and along the auditory 
pathway [12, 13]. Any changes in these neurotransmitter 
systems may affect the transmission of auditory 
information from the cochlea to higher brain areas [54]. 
Indeed, Santarelli et  al. showed that the latencies of 
ABR waves are significantly increased during isoflurane 
anesthesia compared to awake ABRs in Sprague Dawley 

rats [56]. These differences could be due to isoflurane 
reducing the glutamatergic neurotransmission at pre- 
and postsynaptic sites of inner hair cells [56] or by 
augmenting GABAergic inhibition within the auditory 
brainstem circuits. While similar circuit engagement 
can be expected with ketamine/xylazine, Ruebhausen 
et al. showed that isoflurane elevates hearing thresholds 
by around 30  dB more than ketamine/xylazine-based 
anesthesia [41]. This could be due to an additional effect 

Fig. 2 Auditory brainstem responses post pharmacological treatment in WT Sprague Dawley rats under isoflurane anesthesia. ABR waveforms 
across different stimulus intensities (90, 70, 50 dB) post intraperitoneal injection with diazepam (3 mg/kg) in magenta; (N = 14), gaboxadol (10 mg/
kg) in teal; (N = 14), baclofen (5 mg/kg) in blue; (N = 14), bitopertin (10 mg/kg) in purple, retigabine (3 mg/kg) in red; (N = 18), nicotine (5 mg/kg) 
in yellow; (N = 14),; (N = 14), or vehicle solution in black (0.9% saline + 0.3% Tween). Within each experimental block, dosing was counterbalanced, 
and applied 15 min prior to the ABR recordings for all compounds, except for bitopertin (60 min pre-treatment time). The Black bars 
above the graphs indicate clusters of significant differences between conditions. The Gray bars indicate clusters that have not reached significance 
threshold post-permutations. Data displayed as mean ± SEM
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of isoflurane by increasing blood flow to the brainstem 
and tissue perfusion [41, 57], in addition to  a decrease 
in synaptic glutamate release [58], potentially reducing 
stimulus-driven activity [41]. As an alternative to 
isoflurane or ketamine/xylazine, we used medetomidine, 
an α2-adrenoceptor agonist, which is a common choice 
for fMRI studies as it preserved the dynamics of the brain 
better than α-chloralose or isoflurane [59, 60]. Indeed, 
previous studies show that medetomidine administration 

only marginally influences auditory-evoked potentials, 
picked up in the midbrain [61] and the cortex [62]. Other 
studies show that dexmedetomidine, a medetomidine 
isomer, demonstrated a minimal effect on ABRs in 
children [63] and it could be a better alternative for the 
commonly used oral chloral hydrate sedation [64].

A key point of the current study is that testing a diverse 
set of pharmacological modulators showed either none 
or only marginal effects on ABRs. This is surprising 

Fig. 3 Auditory brainstem responses post pharmacological treatments in Nrxn1α Sprague Dawley rats under isoflurane anesthesia. ABR waveforms 
across different stimulus intensities (90, 70, 50 dB) post intraperitoneal injection with diazepam (3 mg/kg) in magenta; (N = 14), gaboxadol (10 mg/
kg) in teal; (N = 14), baclofen (5 mg/kg) in blue; (N = 13), bitopertin (10 mg/kg) in purple; (N = 11), retigabine (3 mg/kg) in red; (N = 16), nicotine 
(5 mg/kg) in yellow; (N = 14), or vehicle solution in black (0.9% saline + 0.3% Tween). Within each experimental block, dosing was counterbalanced, 
and applied 15 min prior to the ABR recordings for all compounds, except for in bitopertin (60 min pre-treatment time). The Black bars 
above the graphs indicated CBPT clusters of significant differences within subjects, i.e., between conditions. The Gray bars indicate clusters that have 
not reached significance threshold post-permutations. Data displayed as mean ± SEM
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Fig. 4 Auditory brainstem responses post pharmacological treatment in WT Sprague Dawley rats under medetomidine anesthesia. ABR waveforms 
across different stimulus intensities (90, 70, 50 dB) post intraperitoneal injection with diazepam (3 mg/kg) in magenta; (N = 12), bitopertin (10 mg/
kg) in purple; (N = 12), retigabine (3 mg/kg) in red; (N = 12), or vehicle solution in black (0.9% saline + 0.3% Tween). Within each experimental block, 
dosing was counterbalanced, and applied 15 min prior to the ABR recordings for all compounds, except for in bitopertin (60 min pre-treatment 
time). Data displayed as mean ± SEM, was tested with unpaired CBPT. No robust significant differences were found between genotypes 
across anesthesia methods. Grey bars above the graphs indicate clusters of significant differences before CBPT-based correction for multiple 
comparisons, i.e., indicating statistical trends

Fig. 5 Auditory brainstem responses post pharmacological treatment in Nrxn1α KO Sprague Dawley rats under medetomidine anesthesia. 
ABR waveforms across different stimulus intensities (90, 70, 50 dB) post intraperitoneal injection with diazepam (3 mg/kg) in magenta; (N = 12), 
bitopertin (10 mg/kg) in purple; (N = 12), retigabine (3 mg/kg) in red; (N = 12), or vehicle solution in black (0.9% saline + 0.3% Tween). Within each 
experimental block, dosing was counterbalanced, and applied 15 min prior to the ABR recordings for all compounds, except for in bitopertin 
(60 min pre-treatment time). Data displayed as mean ± SEM, was tested with unpaired CBPT. No robust significant differences were found 
between genotypes across anesthesia methods. Grey bars above the graphs indicate clusters of significant differences before CBPT-based 
correction for multiple comparisons, i.e., indicating statistical trends
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since the tool compounds, and doses used, engage 
receptors that are involved in signal transmission within 
auditory brainstem circuits. Only nicotine and retigabine 
treatment led to significant, but minor effects in the ABR. 
The effects of nicotine were confined to the very late 
phase of the ABR, resembling the activation of higher-
order brain regions, and only at 90 dB stimulus intensity. 
While the major targets of nicotine (nACh receptors) are 
expressed at outer hair cells to regulate their sensitivity 
[65], no effects on the very early components of the ABR 
were evident. Therefore, our data imply for the action of 
nicotine on higher-order brain circuits to alter auditory 
processing [66]. For retigabine, we observed slightly 
reduced amplitudes of late components of the ABR at 
80 dB, but not at 90 dB or at 70 dB. The volume-specific 
effect challenges the robustness and interpretability of 
the finding. More importantly, the fact that retigabine 
enhances voltage-gated potassium channels (such as 
 Kv7.4) expressed in the auditory brainstem [67], but 
does not clearly affect the ABR, highlights yet again the 
resistance of ABRs to pharmacological modulation. 
Our findings are in line with previous studies, showing 
a lack of ABRs and hearing threshold modulation 
with retigabine [39]. Beyond our findings with other 
compounds (such as diazepam, baclofen, or biopterin), 
the notion of a more general issue with pharmacological 
modulation of ABRs, is further supported by other 
rodent studies, demonstrating limited modulations 
of ABRs (slight increase in wave 1 amplitude, but no 
effects on latency) even with a high dose of opioids 
[68]. This is different from earlier studies demonstrating 
that theophylline [69] or cocaine [70] change ABR 
characteristics likely due to ototoxic rather than 
neuromodulatory effects.

An intuitive explanation for the lack of pharmacological 
modulation of ABRs in rodents is the “masking” effects of 
anesthesia, which may either block the target receptors 
and/or reduce neuronal dynamics to the extent that 
does not allow for further pharmacological modulation. 
We mitigated this caveat by using diverse anesthetic 
protocols, including medetomidine, which largely 
preserves network dynamics. Further support for the 
resistance of ABRs to pharmacological modulation 
comes from human and non-human primate studies 
which allow awake ABR experiments. In this context, 
Samra et  al. showed in awake rhesus monkeys that 
neither Scopolamine nor Morphine intravenous injection 
could modulate the ABR waves [71]. In addition, studies 
in humans report no effects of anesthetic agents, or 
drugs such as benzodiazepines, propofol, and ketamine 
on ABRs [2, 72].Nonetheless, in our rodent study, a 
technical detail worth mentioning is the placement of 
the ground electrode under the contralateral ear in an 

open sound field configuration, there is a possibility that 
activation of the contralateral pathways interferes with 
the signals measured between the ipsilateral ear and the 
vertex. Given that key ABR features (e.g. 4–5 waves at 
defined latencies, and dependency of ABR amplitudes 
on stimulus intensity) are intact in our measurements 
and because the contralateral grounding introduces a 
systematic difference, we do not expect that a potential 
impact of genotype or pharmacological modulation on 
auditory brainstem processing would remain unnoticed 
in our measurements. Also, it is worth mentioning 
that our study was restricted to measuring ABRs with 
click sound stimulation protocols. Future studies could 
investigate whether tone ABRs at specific frequencies 
might be more sensitive to pharmacological modulation 
than click ABRs. Also, while dose selection rigorously 
followed the literature, higher doses could be explored in 
future work.

However, a more general concern with ABR 
measurements is that it primarily detects the neural 
response to sound onset and therefore might limit the 
identification of pharmacological effects, e.g. on later 
components of auditory signal processing. Therefore, 
complementary methods such as surface EEG recordings 
represent useful tools for studying the physiology of 
auditory signal processing.

Independent of these considerations, our study suggests 
that rodent ABR measurements are unsuited for testing 
auditory circuit modulation by diverse pharmacology. 
This conclusion is critical for drug development 
programs that aim to tackle auditory processing deficits, 
such as in psychiatric and neurodevelopmental disorders, 
where sensory abnormalities might stem from early-life 
disruption of auditory brainstem circuits [3].
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