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Abstract
Background The habenula is a major regulator of serotonergic neurons in the dorsal raphe, and thus of brain 
state. The functional connectivity between these regions is incompletely characterized. Here, we use the ability of 
changes in irradiance to trigger reproducible changes in activity in the habenula and dorsal raphe of zebrafish larvae, 
combined with two-photon laser ablation of specific neurons, to establish causal relationships.

Results Neurons in the habenula can show an excitatory response to the onset or offset of light, while neurons 
in the anterior dorsal raphe display an inhibitory response to light, as assessed by calcium imaging. The raphe 
response changed in a complex way following ablations in the dorsal habenula (dHb) and ventral habenula (vHb). 
After ablation of the ON cells in the vHb (V-ON), the raphe displayed no response to light. After ablation of the OFF 
cells in the vHb (V-OFF), the raphe displayed an excitatory response to darkness. After ablation of the ON cells in the 
dHb (D-ON), the raphe displayed an excitatory response to light. We sought to develop in silico models that could 
recapitulate the response of raphe neurons as a function of the ON and OFF cells of the habenula. Early attempts 
at mechanistic modeling using ordinary differential equation (ODE) failed to capture observed raphe responses 
accurately. However, a simple two-layer fully connected neural network (NN) model was successful at recapitulating 
the diversity of observed phenotypes with root-mean-squared error values ranging from 0.012 to 0.043. The NN 
model also estimated the raphe response to ablation of D-off cells, which can be verified via future experiments.

Conclusion Lesioning specific cells in different regions of habenula led to qualitatively different responses to light in 
the dorsal raphe. A simple neural network is capable of mimicking experimental observations. This work illustrates the 
ability of computational modeling to integrate complex observations into a simple compact formalism for generating 
testable hypotheses, and for guiding the design of biological experiments.
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Background
Light enables vision and also influences non-visual sys-
tems such as mood and alertness [1, 2]. The impact of 
light on mood and alertness is important for human well-
being, but the underlying neurobiology is only partially 
understood [3]. Zebrafish are simple vertebrates whose 
transparent tissues are amenable to optical imaging. 
Their complex behaviour (e.g., swimming, hiding, freez-
ing) provide a way for studying mood, anxiety, alertness, 
and other phenomena. The habenula is an evolutionarily 
conserved region of the brain that is of central impor-
tance in mood disorders, and is involved in process-
ing responses to light. The habenula plays a pivotal role 
in motor and cognitive behaviours, by influencing the 
release of important neuromodulators such as serotonin, 
dopamine, epinephrine and histamine [4–7]. In clinical 
studies, deep brain stimulation of the habenula has been 
successful at triggering remission of therapy-resistant 
depression [8]. The role of the habenula in light process-
ing is not fully understood, but light-evoked activity has 
been detected in the habenula of several different species, 
including the rat [9], pigeon [10] and zebrafish [11, 12].

Although the zebrafish brain is far simpler than mam-
malian brains, the zebrafish habenula has strong homol-
ogy to the mammalian habenula. Just as the mammalian 
habenula contains two subdomains (medial and lateral), 
the zebrafish habenula can be divided into two subdo-
mains - the dorsal (dHb) and ventral (vHb) habenula. In 
rat [9] and pigeon [10], electrophysiological recordings 
demonstrated that light triggers both excitation and inhi-
bition in the habenula. Evoked activity, either phasic or 
sustained, was detected in both medial and lateral subdo-
mains. Similar results have also been shown in zebrafish 
[12].

The dorsal raphe (DR) nucleus, a major structure 
downstream of the habenula, also participates in regu-
lating brain state in response to lighting conditions as 
shown by recent studies in which larval zebrafish prefer 
different lighting conditions after optogenetic manipula-
tion of the raphe [13] or habenula [12]. Tracing experi-
ments have suggested that the medial habenula can 
modulate DR activity via the interpeduncular nucleus 
[14, 15], while the lateral habenula has direct and indirect 
projections [16]. The roles of these different pathways in 
mediating the effects of light is unknown. One way to 
confirm causal relationships between anatomical regions 
of the brain is to perform localized perturbations, such 
as via two-photon laser ablation to lesion specific cells 
[17, 18]. Two-photon laser ablation can provide a causal 
relationship because it allows ablation of functionally 

specific cells, which cannot be easily done with a geneti-
cally encoded tool. Nevertheless, establishing neuronal 
connectivity is rarely simple, and the results of localized 
perturbations can be extremely non-intuitive to interpret 
directly.

Mathematical modeling is used in many scientific stud-
ies where experimental evidence provides non-obvious 
clues about underlying phenomena: the model provides 
an interpretation of the evidence (a candidate mecha-
nism), while computation provides unbiased evaluation 
(across millions or billions of candidates) for whether 
the candidate interpretation is indeed consistent with 
the observations. Here, we investigated raphe response 
to light (i.e., calcium response of neurons in the dor-
sal raphe), immediately after functionally specific (ON 
or OFF) cells of the habenula were ablated. Specifically, 
we developed a two-layer feed forward neural network 
model, that used the habenula response to light as input 
to simulate the raphe response. The goal of this model-
ing is to provide a compact computational replica of the 
experimental findings, because summarizing and reca-
pitulating a complex system can give insight into causal 
patterns and hypotheses for future experimental testing.

Results
The habenula displays a broad and dynamic response to 
irradiance change
The zebrafish habenula consists of neurons surrounding 
neuropils that are innervated by afferent neurons [19–
22]. We first characterized habenula activity evoked by 
pulses of light. Two-photon imaging was performed on a 
transgenic zebrafish line expressing the calcium indicator 
GCaMP3 throughout the habenula [23] (Fig. 1A). Reso-
nant-scanning, combined with piezo-driven focusing, 
was used to record the activity of cells at multiple focal 
planes (Fig.  1B, C). With a step size of 10  μm, so that 
each cell would be sampled only once, most of habenula 
could be covered with 5 planes at a rate of 1 Hz. Haben-
ula activity was monitored as the larva was exposed to 
20- second pulses of blue light. We used relatively long 
pulses, rather than brief flashes, to allow longer charac-
terization of responses. Steps involved in the analysis of 
habenula response to light are shown in Fig. 1D. In total, 
2974 cells were identified in the habenula, and an analy-
sis of their responses to light pulses showed the presence 
of multiple neuronal subtypes (Fig.  1E). We found neu-
rons that showed excitatory response to light onset (the 
ON response) and also neurons that showed excitatory 
response to light offset (the OFF response). The finding 
here is consistent with previous findings using a short 
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(1 s) red light pulse [11] and a 10-second blue light pulse 
[12].

We used the temporal light responses to group dorsal 
habenula (dHb) and ventral habenula (vHb) cells into 
individual clusters. The 2974 cells were first classified 
into dHb (1747 cells) or vHb (1227) region, depending 
on physical location. Then, k-means clustering was per-
formed for each region (see Methods). Resulting clusters 
consisted of cells that were excited by light (ON cells), 
cells that were excited by subsequent darkness followed 
by sharply spiked response (phasic OFF cells), or cells 
excited by darkness followed by gradual decrease (tonic 
OFF cells). Both ON and OFF responses were seen in 
both dHB and vHb (Fig. 1F). This suggests that light OFF 
(or darkness) causes specific events in specific habenula 

cells, distinct from the ON cells. Thus, depending on 
their light response, the six habenula clusters identified 
were named D-ON-Tonic, D-OFF-Tonic, D-OFF-Phasic, 
V-ON-Tonic, V-OFF-Tonic, and V-OFF-Phasic. We refer 
to these six as the habenula subtypes.

Raphe response is modulated differently by ablating 
different regions of the habenula
Given the dynamic response in the habenula as shown 
in Fig. 1 and the persistence of dorsal raphe (DR) inhibi-
tory response by light ON, as shown previously [13], 
we further tested if there is any functional link between 
the habenula light response and the DR inhibitory 
response by light ON. To test this, we used the technique 
of laser ablation or “lesioning” [12, 24], which allows 

Fig. 1 The habenula has multiple subtypes of cells that show differential response to light. (A) Dorsal view of the head of a live 7-day-old fish, with 
GCaMP3 expression in the habenula (arrows) under the control of the s1011t GAL4 driver. (B) A single two-photon slice through the dorsal habenula of 
the fish in panel A (boxed region). (C) A yz-reconstruction at the point indicated by the yellow line in panel B, showing a transverse view of the habenula. 
The dotted lines indicate imaging planes separated by 10 μm. The yellow line indicates the plane imaged in B. Dashed lines show the border of the ha-
benula. (D) Workflow of habenula analysis (E) Heat map showing the activity of 2974 individual neurons (rows) across multiple light on and off cycles. Red 
bars on top correspond to the time period when light is switched on. As seen, some neurons show higher activity during light exposure (ON cells) and 
some neurons show higher activity after the light is switched off (OFF cells). (F) Response (y-axis) vs. time (x-axis) for habenula neurons that were clustered 
into subgroups depending on their response to light. Pink regions in each plot corresponds to the light exposure period. Seen here are the three subtypes 
in the dorsal habenula region (left) and three in the ventral habenula region (right). In total six subtypes were identified: D-ON-Tonic, D-OFF-Tonic, D-OFF-
Phasic, V-ON-Tonic, V-OFF-Tonic, and V-OFF-Phasic. lHb: left habenula; rHb: right habenula; a: anterior; p: posterior. Scale bar = 25 μm
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localized disruption. In general, lesioning led to a sus-
tained increase in GCaMP6f fluorescence throughout the 
targeted cell (Fig.  2A). Damage to fibers of passage was 
controlled for by imaging: namely, we only used lesions 
that did not lead to transient or sustained GCaMP6f fluo-
rescence increase in regions away from the targeted site 
(e.g. in the contra-lateral habenula or pallium). There was 
no obvious change in the dHb response when cells in the 
ventral regions of the habenula were targeted, indicating 
that fibers of passage, which innervate the dorsal haben-
ula, are not damaged. The workflow for our analysis of 
raphe response to light can be found in Fig. 2C.

In concordance to results from our earlier studies, we 
found again that with an intact habenula, the DR showed 

an inhibitory response during light exposure (black 
curves, Fig.  2D-F). When the laser was targeted to the 
left dorsal habenula neuropil regions that are activated 
by light ON, there was now light-evoked excitation rather 
than inhibition in the DR (Fig.  2D). Lesioning ON cells 
in the ventral region of the habenula led to a reduction 
in tonic activity in the DR, and few raphe cells showed 
any response to illumination change (Fig. 2E). When OFF 
cells were targeted in the ventral region, there was again 
a reduction in tonic activity of serotonergic neurons, 
accompanied by strong excitation upon transition to 
darkness (Fig. 2F). These lesion studies show that the dis-
tinct functional populations of the habenula, in response 
to light onset and offset, dynamically regulate response 

Fig. 2 The effects of lesioning specific cells in the habenula on raphe response to irradiance change. (A-B) Examples of lesioning. The arrows indicate 
individual cells with elevated levels of intracellular calcium, following two-photon laser lesioning. (C) Workflow of raphe analysis. (D-F) The response of 
raphe (y-axis) vs. time (x-axis) when the habenula is intact (black curve) vs. when specific cells are lesioned in the habenula (blue curve). Red regions 
correspond to periods of light exposure. When the habenula is intact, the raphe is inhibited during light exposure in all three experiments. (D) The raphe 
shows inconsistent activation during light exposure when ON cells in the dorsal habenula (D-ON) are ablated. (E) The raphe is almost unresponsive when 
ON cells in the ventral habenula (V-ON) are ablated. (F) The raphe shows activation as soon as light is switched off, when the OFF cells in the ventral 
habenula (V-OFF) are ablated
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in DR serotonergic neurons. However, the nature of the 
habenula influence on the raphe was not clear from our 
experiments, and so we next developed a computational 
model.

Model construction
The goal of the modeling is to recapitulate the behavior 
of raphe (the output) in response to the habenula (the 
input) when different parts of the habenula are ablated 
or not. We curated the input to the modeling as follows. 
For each of the six habenula subtypes (Fig. 1F), we first 
created characteristic responses over a 100 s time frame 
that included a single 20s light exposure window (see 
Methods and Fig. 3A). After smoothing these curves, we 
used linear interpolation to obtain values at a resolution 
of 0.01s (the experimental measurements were taken at 
1 s intervals). This resulted in a 9901-long vector for the 
neuronal response for each of the six habenula subtypes, 
for each of the four experimental conditions (3 abla-
tions and 1 non-ablation condition). When a particular 
habenula subtype was ablated, its neuronal response was 
set to zero for that experimental condition. The 9901-
long vectors of neuronal response were gathered for all 
six habenula subtypes and all four ablation or non-abla-
tion conditions into a 39,604⨯6 matrix. Each column 

corresponds to one habenula subtype, and each row cor-
responds to the habenula response from time t = 1s to 
t = 100s in increments of 0.01s, concatenated across four 
experimental conditions. This habenula matrix is the 
input for our efforts to model how the raphe responds to 
the habenula (Fig. 3B).

For the raphe region of the brain, the same processing 
steps (averaging, smoothing, interpolation) were per-
formed to obtain a raphe response profile under each 
of the four experimental conditions: unablated, D-ON 
ablated, V-ON ablated and V-OFF ablated. This resulted 
in a vector of size 39,604⨯1 for the raphe output dataset 
(the target output for our modeling, Fig. 3C).

We first tried to obtain mechanistic models of haben-
ula-raphe interactions by developing multiple Ordinary 
Differential Equation (ODE) models that employed inco-
herent feedforward loops. The ODE models used bio-
logically-informed networks of neuronal activation and 
inhibition, similar to those in Additional File 2. However, 
our ODE modelling efforts failed to recapitulate raphe 
responses from habenula inputs.

We then proceeded to implement simple multi-layer 
perceptron (MLP) feed forward neural networks (NN). 
Such networks would have an input layer with six nodes 
(the six habenula subtypes) and an output layer with 

Fig. 3 Characteristic responses of habenula and raphe to one light-dark cycle. (A) Schematic showing the workflow and data structures obtained from 
processing the raw neuronal activity data from the habenula and the Raphe. The “Unknown Model” represents an as-yet unknown model whose goal 
would be to use the habenula data as input to estimate raphe behaviour from the ablation experiments. (B) Characteristic responses of the six habenula 
subtypes to light exposure were obtained by averaging across the four light-dark periods. This was followed by padding and interpolation to extend the 
response trajectory to 100s so all neurons would reach the baseline, followed by smoothing. (C) Characteristic responses of raphe neurons to unablated 
conditions or ablation experiments were obtained from the response of individual raphe cells to the first light exposure and following dark period
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one node (raphe response). Between these layers would 
be an intermediate hidden layer that would assimilate 
the habenula inputs and pass a signal to the raphe. In 
the simplest form, this hidden layer would have a single 
node and this design of the neural network also failed 
to recapitulate raphe responses. As the next simplest 
design, we tried a model with two nodes in the hidden 
layer, and this simple model was able to fit the observed 
raphe responses to a satisfactory degree, as estimated by 
the root mean square error (RMSE) between the experi-
mentally observed and model-estimated Raphe behav-
iors. The weights and biases of the best fit model can 
be seen as arrow labels on Fig.  4A. The fits of model-
estimated vs. observed raphe responses and the RMSE 
values are shown in Fig.  4B. The RMSE values for the 
unablated case, the V-ON ablated case and the V-OFF 
ablated case were all low and comparable (0.014, 0.015 
and 0.012 respectively). The RMSE for the D-ON ablated 
experiment was comparatively higher at 0.0435, but still 
included a neuronal activity peak during the light ON 

period and a second peak once light was switched OFF, 
as observed in the experiments. The overall RMSE for all 
four ablation experiments was found to be 0.0246.

Because this is a simple network, the edge weights can 
also be used to draw inferences about neuronal influ-
ences over other neurons in the network, hinting towards 
the beginnings of mechanistic understanding. The 
weights suggest that the D-ON-Tonic cells in the haben-
ula have an inhibitory effect on both intermediate nodes, 
while the V-ON-Tonic cells have an activating effect. It 
is important to note that since the corresponding neu-
rons in dorsal and ventral regions (ON-Tonic, OFF-Tonic 
and OFF-Phasic) have mostly similar (but not identical) 
behaviors to light (Fig. 2), it is possible to get similar (but 
not identical) raphe behavior in the unablated experi-
ments by assigning the weights of the Dorsal nodes to 
the ventral and vice versa. However, this would not fit the 
observations from the D-ON and V-ON ablation experi-
ments. It is interesting that the two ON-Tonic nodes have 
opposing effects on the intermediate nodes. In contrast 

Fig. 4 Neural network model and estimated raphe behavior. (A) The final neural network model that was able to recapitulate raphe behaviour from 
habenula input. The first layer of the network has six nodes corresponding to the six habenula subtypes. The middle layer has two nodes and the final 
output layer has one node whose output is the estimated raphe behaviour. The numbers on the edges represent the weights of the edge. (B) Observed 
raphe behaviour (blue) and model-estimated raphe behaviour (dotted gray) for the unablated and the ablation experiments shows good fit (RMSE of the 
fit shown on the plots) (C) Model-estimated raphe response for a potential D-OFF ablation experiment
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both D-OFF-Phasic and V-OFF-Phasic nodes have only 
activating effects on both intermediate nodes. Also, while 
the V-OFF-Tonic node has an inhibitory effect on both 
intermediate nodes, the D-OFF-Tonic node has an acti-
vating effect on one intermediate node and an inhibitory 
effect on the other intermediate node.

Finally, our model was also used to estimate the poten-
tial raphe response to a hypothetical D-OFF ablation 
experiment (Fig.  4C). Such an experiment in the future 
may be used to validate/ fine tune the parameters of the 
model. To test the robustness of our model we also per-
formed ten-fold cross validation on our dataset. Briefly, 
for each ablation experiment, we split the raphe datasets 
into ten non-overlapping sets of neurons. Each set was 
taken to be the validation set for one iteration of the cross 
validation, while the other nine were taken as the training 
set. The average raphe responses were computed for the 
training and validation datasets. An MLP was fit to the 
training set and the resulting model (the “best-fit MLP”) 
was evaluated using the RMSE relative to the training set 
and relative to the validation set. This was repeated for 
ten iterations. The range of training and test errors over 
the ten-fold cross validation can be found in Additional 
File 3.

Interpreting the NN model parameters
To seek mechanistic understanding from our best fit neu-
ral network (NN) model, we computed the contribution 
of each node in our model, to nodes in the successive 
layer (Fig. 5A-D). According to our model, in the unab-
lated case, the inhibitory phenotype shown in the raphe 
response to light activation is mostly driven by an inhibi-
tory effect of the H1 node on the output raphe node. This 
can be seen by the negative values of H1→R in the left-
most column of Fig. 5A between 20 and 40s (period when 
light is on). It is also important to note that the weight 
of the edge between H1 and R in our model is negative, 
and so strong activators of the H1 node will cause strong 
inhibition of the raphe node. Looking at the contribution 
of individual habenula subtype nodes to H1, we see that 
H1 activation during light is mostly due to strong activa-
tion by the V-ON-Tonic cells (middle column, Fig. 5A). In 
contrast, the recovery of this inhibitory phenotype after 
light is switched off, is due to activation of the raphe node 
by the H2 node. This can be seen from positive values of 
H2→R between time 40–50 s in the leftmost column of 
Fig. 5A.

In the D-ON ablated case, we see that raphe activation 
during light activation occurs as a competition between 
inhibiting H1 and activating H2 nodes, resulting in over-
all activation of the raphe node (leftmost column Fig. 5B). 
As earlier, this is a consequence of V-ON-T activation of 

Fig. 5 Contributions of each neural network node to the Raphe response. (A-D) Contributions (y-axis) of each NN node (x-axis) to the nodes in the suc-
cessive layer over 100s (y-axis). In each panel, the leftmost column shows the contribution of H1 and H2 nodes to the Raphe output (after scaling by the 
respective Layer 2 weights). The middle panel shows the contribution of the six Habenula subtypes to the H1 node (after scaling by the respective Layer 
1 weights), and the right most column shows the contribution of the same six habenula subtypes to the H2 node (after scaling by the respective Layer 1 
weights). The contribution intensities are indicated by the color scheme ranging from negative/inhibition (blue) to positive/activation (red). (A) shows the 
node contributions in the unablated experiment, (B) in the D-ON ablation experiment, (C) in the V-ON ablated experiment and (D) in the V-OFF ablation 
experiment. In the ablation experiments, the contributions of the ablated neurons can be seen to be zero. (E) shows the sensitivity of the final estimated 
Raphe output to changes in each NN parameter. The intensities show the fit error computed as the RMSD between the model-estimated and observed 
Raphe responses across the unablated and three ablation experiments
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the H1 and H2 nodes. In addition, the ablation of D-ON 
results in the removal of D-ON inhibition of H2, which 
also contributes to activation of the R node by H2 (as 
opposed to no effect in the unablated case). In the V-ON 
ablated case, the lack of strong activation of H1 and H2 
nodes (seen earlier) is now absent, and hence is respon-
sible for an overall loss of signal from H1 and H2 to the 
R node (Fig. 5C). Finally in the V-OFF ablated case, the 
strong phasic response after light offset is driven mostly 
by H2 activation of the R node, as evidenced by the 
positive values of H2→R between time 40–50  s in the 
leftmost column of Fig.  5D. In addition, ablation of the 
V-OFF-Phasic node results in removal of the inhibitory 
effect due to V-OFF phasic activation of H1 node in the 
unablated case.

Model sensitivity analysis
To obtain the sensitivity of model estimation to changes 
in each parameter of the NN model, we individually 
scaled each NN parameter by a factor between 0.1 and 10 
(0.1x– 10x) and compared the model simulations against 
experimental observations of raphe behavior. For each 
ablation experiment, the error is compared as root mean 
square deviation after the simulated raphe response has 
been translated to have a median response of 1 over the 
first 10s (out of the 100s window). As seen in Fig.  4C, 
the NN model was more sensitive to changes in some 
parameters and less sensitive to others. For example, the 
model is relatively less sensitive to changes in the weight 
of the edges from D-ON-Tonic to the H1 and H2 nodes. 
In contrast, the model is much more sensitive to changes 
in the edges from V-ON-Tonic to H2, which is unsurpris-
ing, considering the magnitude of the contributions of 
V-ON-Tonic to raphe responses, seen in Fig. 5A-D. Also, 
as a general trend, higher error values are found when 
parameters are scaled up rather than scaled down. Fur-
thermore, the model is less sensitive to changes in edges 
going into the H1 node than into the H2 node.

Discussion
Typically, ablation of upstream neuronal regions causes 
downstream regions to lose responsiveness to exter-
nal stimuli. Remarkably, in our experiments, lesioning 
different types of functionally-specific neurons in the 
habenula caused the downstream neuronal responses in 
the dorsal raphe to change in several unexpected ways– 
from inhibitory to excitatory, from light-excitatory to 
dark-excitatory, and from tonic to phasic. Our work 
used brief exposures to light and dark in larval zebrafish, 
because light and dark are strong stimuli for these brain 
regions and therefore aid dissection of neural connec-
tivity. Another reason we used light and dark is because 
they are evolutionarily connected to predators and dan-
ger response. In humans, danger response is linked to 

psychiatric conditions such as anxiety and depression, 
and the human habenula is known to have an influential 
role in anxiety and depression.

Previous work showed that neural activity in the dor-
sal raphe is generally inhibited by light [13], and we also 
found that dorsal raphe neural activity (measured by cal-
cium fluorescence intensity change) was negatively cor-
related with light exposure. We then identified different 
populations of habenula cells (ON and OFF cells) that 
were positively or negatively correlated with light. We 
used laser ablation to disable specific types of neurons 
in the habenula, specifically the ON-cells or specifically 
the OFF- cells. The raphe response to light and dark, after 
each type of ablation, was altered in remarkable ways 
which contain intricate information about how the dor-
sal raphe is affected by different types of neurons in the 
habenula.

To characterize and analyze this unexpected diversity 
of responses, we analyzed neuronal imaging and con-
structed a simple multilayer perceptron model that was 
able to recapitulate raphe responses from habenula input. 
We chose an MLP model for our estimations because 
compared to other statistical algorithms for predic-
tion, a simple MLP model allowed both high regression 
accuracy and the ability to draw insights from the model 
parameters. Our computational simulations using the 
MLP model mimic the biological observations by pro-
ducing four different states of the DR: (1) inhibited by 
light; (2) spontaneously active regardless of irradiance; 
(3) excited by light and (4) excited by darkness. While we 
do not claim that the model in Fig. 4A is the only model 
that is capable of recapitulating raphe responses from 
habenula inputs, it could be one among a set of similar 
equally-likely models. Such a set of equally-likely models 
would include uncertainty about the parameter values as 
well as mechanistic uncertainty. These variations cannot 
be disambiguated with the available data, but we can con-
fidently assert that a small number of connections (as in 
Fig. 4A) is sufficient to explain the flipped responses seen 
in the ablation experiments seen in Fig. 2. The problem 
of choosing among possible models depends on whether 
the goal is fitting or prediction. Our primary goal is to 
describe the data rather than to generalize to different 
cases, but our model has parameters that might predict 
raphe behavior in unknown cases, so it illustrates one 
plausible scenario with a logical explanation for inter-
pretation of the experimental results. When additional 
experiments are performed in the future, the resulting 
data can further improve the modeling. While we did 
perform ten-fold cross validation with our model, there 
were challenges with such validation. Since the input and 
output data are representations of average behavior of 
habenula and raphe, there is no strict one-to-one corre-
spondence between the input and output instances. For 
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true one-to-one correspondence, the habenula and the 
raphe responses would need to be measured in the same 
fish, which is not feasible with our ablation experiments. 
Furthermore, since each individual row or “instance” in 
the input and output corresponds to habenula/raphe 
behavior at time intervals separated by just 0.01s, it is 
very likely that the input and output values of any ran-
domly chosen validation set would have very close 
neighbors (in value) in the training set. This defeats the 
purpose of a random validation set, as these values are 
not independent of each other. Hence, we chose to per-
form 10⨯ cross-validation by computing average behavior 
from a subset of raphe neurons, while using the average 
of the left-out neurons as the validation (Additional File 
3).

Upon deeper inspection of the weights and the contri-
butions of each node in our neural network to the final 
raphe response, we observed that most of the interest-
ing phenotypes seen with the raphe response to light are 
dominated by the activity of V-ON-Tonic nodes and its 
activation of the H1 and H2 nodes, with smaller contri-
butions from the other habenula subtypes. If our mod-
elling estimations are accurate, that would also imply 
the presence of biological equivalents of the H1 and H2 
nodes, which act as intermediates between the habenula 
and raphe. While previous studies have suggested the 
rostromedial tegmental nucleus as one such mediator 
[16], future experiments can help identify the anatomi-
cal region and the precise set of neurons involved in this 
mediation.

In summary, this study used computational model-
ing to delineate specific hypotheses about the interplay 
between the dorsal and ventral habenula during raphe 
response to light and dark, with systems-level correla-
tions emerging from analysis of the best fit model. Com-
putational modeling is particularly valuable in the field 
of neuroscience because even a single lesion in the brain 
can yield rich and non-intuitive phenotypes. Our model 
reveals that a simple network can create a variety of com-
plex behaviors, and can explain the seemingly paradoxi-
cal observations observed with ablation experiments. 
Other aspects of the model, such as the hypothesized 
nature of each functional connection and the relative 
strength of each effect are more speculative, and their 
usefulness is more likely to lie in the holistic illustration 
of a plausible scenario rather than a literal specification 
of calcium regulation in the neurons. Qualitative mod-
eling can shed light on confusing phenomena and guide 
the choice of validation experiments, while providing 
testable hypotheses for future experiments.

Conclusion
Because the habenula has a causal influence on anxiety/
depression disorders, there is urgent need to map func-
tional connectivity from the habenula to the raphe at the 
level of neurons or neuron clusters. When neurons in 
specific regions of the habenula were ablated, neurons in 
the dorsal raphe showed reproducible patterns of change 
in how they responded to light and dark. Response pat-
terns exhibited a surprising variety of qualitative changes, 
depending on which habenula site was ablated. Compu-
tational modeling was undertaken because simulating 
this variety could aid the design of future experiments 
and the disambiguation of potential mechanisms. 
An artificial neural network was trained by statistical 
machine learning and was successful at recapitulating the 
observed range of response profiles. In other words, the 
surprising variety we observed could be captured using a 
simple, compact formalism. Future work should continue 
to upgrade models of the habenula until both the model 
mimics the microanatomy in not just its outputs but also 
its internal formalisms. Inevitable future growth in data 
availability and computational resources will expand 
modelling research toward comprehensive integration of 
neuroscience experimentation and simulation. Such inte-
gration will be necessary for the overarching biomedical 
objective, which is mapping the functional connectivity 
of zebrafish neuronal structures that are homologous to 
structures implicated in human psychiatric disorders.

Methods
Experimental methods
Fish lines
Experiments were performed in accordance with guide-
lines issued by the Institutional Animal Care and Use 
Committee (IACUC) of the Biological Resource Centre 
at Biopolis, Singapore. Zebrafish (Danio rerio) lines used 
for this study were: Tg(tph2:GAL4, UAS: Kaede)y228 [25], 
GAL4s1011t [26] and Tg(elavl3:GCaMP6f)a12200.

Two-photon calcium imaging
Zebrafish larvae (aged 5–10 days-post-fertilization, 
dpf ) were immobilized in mivacurium (1.5  mg/ml) and 
embedded in low-melting temperature agarose (2.0% in 
E3) in a glass-bottom dish (Mat Tek). They were imaged 
on a Nikon two-photon microscope (A1RMP), using a 
25x water immersion objective (NA = 1.1). The femtosec-
ond laser (Coherent Vision II) was tuned to 920 nm for 
GCaMP6f imaging. Stacks were collected in resonant-
scanning mode with 2x pixel averaging. The sample size 
was based on [11]. Blue light stimulus was generated by 
5  mm blue LEDs (458  nm peak emission), which was 
powered by a 5  V TTL signal from a control computer 
and synchronized with image capture using a National 
Instruments DAQ board, controlled by the Nikon 
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Elements software. Each light pulse was 20 s long and fol-
lowed by 20 s dark with a total of 4 pulses of light. Light 
intensity at the sample was 0.13 mW/cm2.

Laser ablation
Larval zebrafish (6–8 days post fertilization, dpf ) 
were subjected to laser ablation for ON or OFF 
cells in the habenula, as described in [27]. Briefly, 
Tg(Elavl3:GCaMP6f) larvae were anaesthetized and 
then mounted in 2% low melting temperature agarose. 
After identifying habenula ON and OFF cells, lesions 
were conducted via several pulses (100–500 msec) of the 
femto-second laser (960  nm). Lesioning was monitored 
by time-lapse imaging before and after each pulse, and 
was terminated when there was a localized increase in 
GCaMP6f fluorescence. Animals were discarded if lesion-
ing caused bursting of blood vessels in the habenula.

Image analysis
Initial data pre-processing
All image processing steps were performed follow-
ing the same protocol as our earlier work [27]. In short, 
raw images obtained were first registered to correct for 
any vertical/horizontal movement artefacts using cross-
correlation. Then, a median filter of size 3 was applied 
to remove noise. A darker region outside the region of 
interest was chosen as the background and subtracted 
from the image to remove background noise. Non-linear 
trends in the data were detrended using polynomials of 
order 2–5. Data was then normalized into Z-scores by 
subtracting the overall mean and dividing by the stan-
dard deviation. A rolling window average was then used 
to smooth noisy traces where necessary. Where possible, 
cells were segmented (see below) or images were directly 
analysed as pixels (using the Thunder platform [28] for 
fast pixel-based clustering and factorization).

Cell segmentation
Each stack was scaled 2x in imageJ (RRID: SCR_003070), 
then maximally projected to a single image, which was 
then subjected to a minimum filter and unsharp mask 
to sharpen the boundary of cells. ROIs were identified 
using the “find maxima…” command, as a way to local-
ize regional darkest point as the center of each ROI. The 
boundary of the ROI was outlined by “analyze particle…” 
that connects bright pixels into mosaic-like tessellated 
plane, encircling each darkest point. Each ROI was then 
numbered sequentially using the ImageJ ROI Manager 
and mapped back to the original despeckled image stack. 
Manual segmentation was done here to delete extraneous 
ROIs outside the habenula or dorsal raphe and to encir-
cle cells that were not detected by the algorithm (< 10% 
of total ROIs). In the last step, “Set measurements…” and 
“measure” in ImageJ provided the mean fluorescence 

value of all pixels within each ROI across the entire image 
stack and the x-y coordinates of each ROI. Time-lapse 
series in which z drifting occurred were excluded, as in 
this case ROIs could not be defined.

Statistical and modeling methods
Classification of the habenula cells
The habenula was segmented and then, to identify 
evoked responses to light, the spatiotemporal calcium 
dataset was subjected to k-means clustering as described 
in [27]. Habenula cells were classified into being dorsal 
or ventral depending on their location (position in the 
Z-stack), and k-means clustering was performed indi-
vidually for cells in each region, as in our earlier studies 
[13, 27], to find cells that responded similarly to the light 
pulses. The clustering method was k-means and the dis-
tance measure was correlation, and this configuration ran 
quickly and was able to recapitulate well-established clas-
sifications of neuronal phenotype such as tonic and pha-
sic. Not knowing a priori the ideal number of neuronal 
clusters, we ran k-means clustering with different k val-
ues from 2 to 10 and compared results. For each region 
(dorsal/ventral), we manually inspected the clustering 
results and judged the optimal k to be three (see Addi-
tional File 1 for clustering results for k values 2–5).

Defining model input and output
For each of the six habenula subtypes identified via 
k-means clustering, we first obtained a mean response for 
a 40 s window that comprised of a 20 s light period fol-
lowed by a 20s dark period. This response was obtained 
by averaging across four subsequent light/dark cycles for 
each cell, and then computing the mean response of all 
cells in each cluster for this window. Although at the end 
of the 40 s window a new light cycle was initiated in the 
experiments, we observed that some phenotypes had not 
yet decayed to the baseline. Hence to simulate complete 
response for each habenula subtype, we first padded the 
response on each side as follows. For the time before 
light exposure, we appended a 20s period of baseline 
activity, simulating unexcited neurons. For padding after 
the 40s window, we used PCHIP (Piecewise Cubic Her-
mite Interpolating Polynomial) interpolation to extend 
the response for 40 more seconds, bringing the total to 
100s for each habenula cluster (20s unexcited + 20 s light 
exposure + 60  s decay to baseline). These 100s habenula 
responses were then smoothed to remove noise and were 
used as input to our model.

Similarly for the dorsal raphe, we constructed a mean 
100s behavior for raphe response to each ablation experi-
ment as follows. Since the raphe response across subse-
quent light/dark cycles were not consistent for each cell 
unlike the habenula, we used only the response to the 
first light exposure to obtain mean 40s response for each 
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experiment. These were then padded and smoothed simi-
lar to the habenula data to obtain 100s responses for the 
raphe. This was used as the “true” output against which 
our model to fit its simulated responses.

Neural network model
To simulate raphe responses from habenula input, we 
used a simple multilayer perceptron (MLP) neural net-
work (NN). The network had 6 input nodes (correspond-
ing to each habenula subtype), a hidden layer with two 
nodes and a third layer with one output node. All nodes 
in the hidden and output layer used a Rectified Linear 
Unit (ReLU) activation function. Any other hyperparam-
eters were either set to default values (e.g., learning rate), 
or were not included (e.g., dropout). Earlier attempts 
with ordinary differential equation models employing 
incoherent feedforward loops, or an MLP with a one-
node hidden layer proved insufficient to recapitulate 
raphe behavior from habenula input. The final NN model 
was implemented and fitted using the Keras (v2.2.4-tf ) 
and TensorFlow (v2.1.0) APIs in Python 3.7.6.
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