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Abstract

Background: Neuroinflammation contributes to the pathophysiology of acute CNS injury,
including traumatic brain injury (TBI). Although prostaglandin lipid mediators of inflammation
contribute to a variety of inflammatory responses, their importance in neuroinflammation is not
clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for
prostaglandin formation, cyclooxygenase (COX) -1 and COX-2, for improving outcomes following
TBI. The purpose of the current study was to determine the role of the COX isoforms in
contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or
COX-2.

Results: Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the
level of microglial activation, and the capacity for functional recovery was compared between
COX-I|-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The
deficiency of COX-2 resulted in a minor (6%), although statistically significant, increase in the
sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect
on cortical tissue loss following TBI. As determined by 3[H]-PKI1195 autoradiography, TBI
produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-
type and COX-|-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased
3[H]-PKI1195 binding in all brain regions that were analyzed. Following injury, 3[H]-PKI 1195
binding in the dentate gyrus and CAI region of the hippocampus was greater in COX-2-deficient
mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-
type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was
no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as
determined by acquisition and spatial memory retention testing in a Morris water maze.

Conclusion: These findings suggest that the deficiency of neither COX-1 nor COX-2 is sufficient
to alter cognitive outcomes following TBI in mice.
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Background

The cyclooxygenases (COX-1 and COX-2) are key modu-
lators of inflammation because they are required for the
synthesis of prostaglandin (PG) H,, the substrate utilized
for the synthesis of all biologically active PGs and throm-
boxane A, [1]. Although the activity of both COX-1 and
COX-2 results in the production of the same initial prod-
uct (PGH,), there are significant differences in the expres-
sion characteristics of the two enzymes. Originally, COX-
1 was described as a "housekeeping" enzyme because of
constitutive expression in a variety of peripheral tissues,
whereas COX-2 expression was not detected under physi-
ological conditions but was induced following patho-
genic challenge.

Although there are a limited number of studies examining
the function of COX-1 expressed in the brain, it is clear
that the pattern of COX-1 expression in the CNS is distinct
from the constitutive expression observed in peripheral
tissues. In rats, COX-1 expression is significantly increased
by traumatic brain injury (TBI) with the increased expres-
sion being localized to accumulating cells within and
adjacent to the developing injury [2]. The majority of the
cells expressing COX-1 also express markers of activated
microglia, and the increased COX-1 expression begins
during the first day following the injury [2]. Similarly in
humans, TBI produces increased accumulation of COX-1
expressing activated microglia that localize at the site of
injury [3]. The increased accumulation of COX-1 express-
ing microglia has also been identified in other types of
CNS injury, including ischemic injury [4,5], and pharma-
cological inhibition of COX-1 has been shown to be effec-
tive in reducing neuronal damage following ischemia [6].
These studies showing increased expression and a poten-
tial causative role for COX-1 have suggested that COX-1
inhibition may provide a more effective therapy for TBI
than inhibition of COX-2 [2].

There are a considerable number of reports examining the
expression pattern or function of COX-2 in the brain. In
addition to being constitutively expressed [7-9] and pro-
viding physiological functions in the mammalian CNS
[10], increased COX-2 expression also accompanies
numerous types of CNS injury. COX-2 expression is rap-
idly induced in the cortex and hippocampus following
experimental TBI [11,12]. COX-2 has been implicated in
the permeability of the blood-brain barrier (BBB) and
CNS infiltration of circulating leukocytes [13]. COX-2
may also promote brain edema in experimental intracere-
bral hemorrhage [14], though this role in TBI models has
been questioned [15]. Despite the finding that COX-2-
dependent PGs propagate microglial activation [16], the
utility of COX-2 inhibition following TBI has been
debated as several studies have shown no benefit using
this strategy [15,17,18]. In addition, a recent report using
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genetically deficient mice, showed no effect of COX-2
deficiency on histological or behavioral outcomes follow-
ing TBI [19]. With the conflicting reports on the roles of
the two COX isoforms, we examined the effects of TBI in
mice deficient in either COX-1 or COX-2.

Methods

Animals

The current study included 29 COX-2 +/+, 24 COX-2 -/-
adult (2 - 6 month), and 10 COX-1 +/+, and 10 COX-1 -/
- adult (2 month), male mice bred on a C57BL/6 x 129/
Ola (C57/129) background that were obtained from
Taconic Farms Inc. [20,21]. These mice and their match-
ing wild-type littermate controls were produced by cross-
ing COX-1 heterozygous mice or COX-2 heterozygous
mice that have been maintained for more than 35 genera-
tions. The mice were housed 2 - 4 per cage in a tempera-
ture-controlled environment on a 12-hour light/dark
cycle. Animals were given free access to food and water
and all experimental procedures were reviewed and
approved by the Institutional Animal Care and Use Com-
mittee at the University of Kentucky and carried out in
accordance with the National Institute of Health Guide
for the Care and Use of Laboratory Animals. All efforts
were made to minimize pain or discomfort.

Controlled Cortical Impact (CCI)

The mice were subjected to a cortical contusion injury as
described previously [22,23]. COX-1 +/+ and -/- mice
were anesthetized with intraperitoneal (i.p.) tribromoeth-
anol (Avertin 0.175 mg/kg, Aldrich, St. Louis, MO).
Because a significant level (63%) of mortality occurred in
COX-2 -/- mice following i.p. tribromoethanol, COX-2 +/
+ and -/- mice were anesthetized with 2% inhaled isoflu-
rane. After securing in a Kopf stereotaxic frame (David
Kopf, Tujunga, CA), a midline incision was performed
and the scalp was reflected so that a 4 mm craniotomy
could be performed midway between bregma and
lambda. Care was taken during this procedure to expose
the somatosensory cortex without disturbing the dura
mater. The frame was positioned under a TBI 0310 impac-
tion device (Precision Systems & Instrumentation, Fairfax
Station, VA) that was set to deliver a mild impact (0.3 mm
impact depth, 3 mm tip diameter, 3.5 m/s velocity, 400
msec dwell time) to the cortical surface. Following impact,
Surgicel (Johnson & Johnson) was placed over the crani-
otomy and the incision was stapled closed. The core body
temperature of the animals was 36 - 37°C throughout the
procedure. The mice were then returned to their home
cages and allowed to recover for 4 days before further
experimentation.

Baseline Cognitive Assessment
In preliminary experiments, the COX-1 and COX-2 wild-
type and null mutant animals were trained in the Morris
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water maze (MWM) prior to surgery to evaluate possible
genotypic differences in baseline spatial learning ability.
Briefly, animals were tested in a 127 cm diameter x 56 cm
tall circular pool with a 13.5 cm diameter circular plat-
form submerged approximately 1 cm below the waterline
and located in the middle of the SE quadrant. White, non-
toxic powdered paint was added to the water in order to
obscure the platform. The lighting of the room and vari-
ous spatial cues were constant throughout the training
period. The animals were given 4 - 60 second trials/day
with their entry points (N, S, E, W) being pseudo-rand-
omized each day. If at the end of the 60 sec trial the ani-
mal did not find the platform, the animal was placed
there by the handler and allowed to rest for 15 sec. The
animals were allowed a 5-minute rest between each trial.
The animals were trained daily until they reached asymp-
tote, which was reached for each group after 4 days.

Post-Injury Cognitive Assessment

COX-2 inhibition has been shown to significantly impair
motor function when analyzed from 1 to 3 days following
CCI injury in rats [24]. However, the adverse effect on
motor function was not observed by the 4-day time-point
[24]. To avoid potential effects on motor function, the
current study analyzed the cognitive effects of either COX-
1 or COX-2 deficiency using the Morris water maze
(MWM) 4 days following TBI. Following the last trial on
the 5th day, the animals were allowed a 1-hour rest period
before performing the retention trial where the platform
was removed and the animals were placed in the pool ata
unique location (NW) and given 30 seconds to explore
the pool. The performance in the MWM was analyzed
using a video motion analyzer (Videomex V, Columbus
Instruments, Columbus, OH).

Tissue Sparing Analysis

Following the memory retention test, the animals were
euthanatized by cervical dislocation, their brains rapidly
removed and flash frozen on finely sifted dry ice. The
brains were kept at -80°C until processing. The frozen tis-
sue was sectioned to 16 pm thick coronal slices on a Leica
1850 M cryostat (Nussloch, Germany) and eight equally
spaced sections/slide were thaw mounted onto Fisher
SuperFrost Plus®slides. Serial sets of slides were collected
so that multiple assays could be conducted at similar ana-
tomical levels, which resulted in sections that were
approximately 128 pm apart on each slide. The slides were
stored under vacuum overnight at 4 °C then transferred to
-80°C until time of experimentation.

To assess the potential neuroprotective effect of COX dele-
tion from loss of cortical parenchyma, a tissue sparing
analysis was performed as previously described [23]. One
set of slides was removed from -80° C and allowed to thaw
overnight. The slides were then stained with cresyl violet
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and coverslipped. Images of the slices between Bregma -
0.94 mm and -2.54 mm [25] were obtained and the mean
cortical area, defined as the area between lamina 1 and the
corpus callosum, was quantified using ImageJ software
(NIH, Bethesda, MD). The mean cortical area of the cortex
ipsilateral to the impact was divided by the mean cortical
area of the corresponding contralateral cortex (x 100) to
determine the percentage of tissue spared. Utilization of
this method allows that each animal can serve as its own
control and accounts for changes to the tissue that may
occur during processing [26]. The animals were not iden-
tified by genotype until all measurements had been com-
pleted.

3[H]-PKI 1195 Autoradiography

Microglial activation was assessed by detection of 3[H]-
PK11195 binding to the translocator protein (TSPO) as
described previously [23,27]. Slides were removed from -
80°C and allowed to thaw overnight at room tempera-
ture, loaded into binding racks and incubated in 50 mM
Tris HCI buffer (pH 7.4) for 15 minutes at 4°C. The racks
were then transferred to incubation buffer containing 50
mM Tris HCl and 1 nM [3H]-PK11195 (PerkinElmer, Bos-
ton, MA, specific activity = 73.6 Ci/mmol). The slides
incubated for 2 hours at 4°C followed by 3 washes in 50
mM Tris HCI buffer (pH 7.4) at 4°C for 3 minutes each
and a brief wash in ddH,O at 4°C. The slides were left
overnight to dry at room temperature and were then
placed into Fisher Biotech Autoradiography Cassettes and
exposed to Kodak BioMax film for approximately 5 weeks.
Following exposure, the film was developed using Kodak
GBX developer. The brain regions analyzed were selected
based on previous studies that have shown increased
microglia activation in these regions following brain
injury [23,27,28].

Statistical Methods

MWM performance data were analyzed by 2-way (geno-
type x day), repeated measures (day) ANOVA. Group
comparisons between the COX-1 +/+ and -/- populations
and the COX-2 +/+ and -/- populations for performance in
the target quadrant during the probe trial were analyzed
by t-test. Tissue sparing data for two groups was also ana-
lyzed by t-test. [3H]-PK11195 autoradiography results
were analyzed by 2-way (genotype x hemisphere)
repeated measures (hemisphere) ANOVA. All post-hoc
tests were conducted using Student Newman-Keuls. Sig-
nificance was defined as p < 0.05. Data are represented as
mean + SD.

Results

Baseline Cognitive Assessment

Analysis of the MWM escape latency in the pre-injury
COX-1 +/+ and COX-1 -/- mice revealed that there was a
significant day effect [F(3, 54) = 43.40, p < 0.0001] but
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there was no effect of genotype, or any genotype X day
interaction (Figure 1A). Analysis of the pre-injury per-
formance of the COX-2 +/+ and COX-2 -/- animals
revealed a significant day effect [F(3,51) = 0.81, p <
0.0001] that followed a similar pattern as described for
the COX-1 animals (Figure 1B), where there were no dif-
ferences between the abilities of the wild-type and null
mutant mice to learn the location of the platform before
injury. There was also no significant difference between
the sham-operated wild-type and null mice in any meas-
ure of the MWM (data not shown). These findings indi-
cate that prior to injury neither the deficiency of COX-1
nor COX-2 significantly affected cognitive ability.
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Assessment of pre-injury spatial learning ability as
determined by the MWM. (A) COX-| +/+ and COX-I -/
- mice or (B) COX-2 +/+ and COX-2 -/- mice showed a sig-
nificant day effect (ANOVA P < 0.05) indicating that each
genotype was able to learn the location of the hidden plat-
form. Data are presented as mean + SD.
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Post-Injury Cognitive Assessment

Following TBI, average latency increased from 14.18 +
5.29 secand 9.6 + 3.54 sec, for COX-1 +/+ and -/- animals,
respectively, to 26.44 + 11.06 sec and 25.97 + 10.76 sec,
suggesting that CCI impaired the ability of these animals
to remember the location of the submerged platform. For
both groups over the course of the 5-day post-injury test-
ing period, there was a significant day effect for escape
latency [F(4, 64) = 18.48, p <0.0001] with both COX-1 +/
+ and COX-1 -/- mice being equally capable of learning
the task, and no significant differences between the geno-
types (Figure 2A). There was also no significant difference
in swim speed between COX-1 +/+ mice and COX-1 -/-
mice (Figure 2B). During the probe trial, COX-1 +/+ and
COX-1 -/- mice did not show a significant difference in
distance traveled in the target quadrant [t(16) = 0.59, p >
0.05] (Figure 2C) suggesting that there was no effect of
COX-1 gene deletion on spatial navigation capabilities
following TBI.

The average latency following TBI increased from 13.13 +
9.42 sec to 25.08 + 10.72 sec for the COX-2 +/+ mice and
from 18.91 + 11.26 sec to 29.67 + 9.40 sec for the COX-2
-/- mice. These findings of increased latency suggest a sim-
ilar adverse effect of the injury on both genotypes ability
to remember the location of the submerged platform.
COX-2 +/+ and -/- animals were able to learn the MWM
task as indicated by significant decreases in latency time
[F(4, 132) = 29.38, p < 0.0001] (Figure 3A) during the
post-injury testing phase, however there were no differ-
ences between the groups. COX-2 wild-type and null
mutant animals also did not differ in either swim speed
(Figure 3B) during the 5 day acquisition testing or the
length of time in the target quadrant during the probe trial
(Figure 3C). Taken together, these data suggest that nei-
ther COX-1 nor COX-2 gene deletion is a critical factor in
altered spatial memory function following TBI.

Tissue Sparing Analysis

There was no statistically significant difference in the
amount of cortical tissue spared between the COX-1 +/+
and COX-1 -/- groups [t(12) = 0.01, p > 0.05] (Figure 4A,
C). There was a statistically significant effect on cortical
tissue sparing that resulted from the deficiency of COX-2
[t(36) =-2.07, p < 0.05]. COX-2 +/+ animals had approx-
imately 72.3 + 8.6% of their cortical tissue spared com-
pared, as compared to 78.3 + 9.2% in the COX-2 -/-
animals (Figure 4B, D).

3[H]-PKI 1195 Autoradiography

In COX-1 +/+ and COX-1 -/- mice, results from a two-way,
repeated measures ANOVA showed a significant increase
in [3H]-PK11195 binding in the injured hemisphere com-
pared to the uninjured hemisphere for the majority of the
brain regions analyzed (Table 1). The [3H]-PK11195 bind-
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Figure 2

Post-injury cognitive assessment and probe trial of
COX-1 +/+ and COX-1 -/- mice. (A) Post-injury MWM
escape latency. There was a significant effect of day (ANOVA
P < 0.0001) for both genotypes, but there was no significant
difference between COX-| +/+ and COX-| -/- mice. (B)
Analysis of swim speed during the probe trial of the MWM.
(C) Duration of time mice remained in the target quadrant
during the probe trial of the MWM. Data are presented as
mean * SD.
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Post-injury cognitive assessment and probe trial of
COX-2 +/+ and COX-2 -/- mice. (A) Post-injury MWM
acquisition latency. COX-2 +/+ and COX-2 -/- mice showed
a significant day effect (P < 0.0001) but no significant differ-
ences between the two genotypes. (B) Analysis of swim
speed during the probe trial of the MWM. (C) Duration of
time in the target quadrant during the probe trial of the
MWM. Data are presented as mean * SD.

Page 5 of 9

(page number not for citation purposes)



BMC Neuroscience 2009, 10:108

A. 100+

% Cortical Tissue Spared

COX-1 +/+ COX-1 -/~

COX-1 +/+

Figure 4

http://www.biomedcentral.com/1471-2202/10/108

B. 100-
] *
B 90-:
o
:?J. I
]
2
o
g J
[ =
8

COX-2 +/+ COX-2 -/-

Tissue sparing analysis. (A) Comparison of cortical tissue loss between COX-1 +/+ mice and COX-1| -/- mice. (B) Compar-
ison of cortical tissue loss between COX-2 +/+ mice and COX-2 -/- mice. (C) Pictorial representation of cortical tissue sparing
following CCl in COX-1 +/+ and COX-1 -/- mice. (D) Pictorial representation of cortical tissue sparing following CCl in COX-
2 +/+ and COX-2 -/- mice. (*) Represents significance from wild-type controls (P < 0.05). Data presented as mean + SD.

ing following injury was not significantly increased in the
cortex of both genotypes, or the CA1 region of COX-1 +/+
mice. The CA1 region showed a genotypic effect as the
COX-1 -/- animals produced less [3H]-PK11195 binding
in both the injured and uninjured hemisphere compared
to the COX-1 +/+ animals [F(1,13) = 18.61, p < 0.001],
suggesting less microglial activation.

A significant increase in [3H|-PK11195 binding was
observed in all brain regions of the injured hemisphere for
both the COX-2 +/+ and COX-2 -/- animals (Table 2). In
addition to the main effect of hemisphere, there was a sig-
nificant interaction of genotype X hemisphere in the CA1
region [F(1,36) = 9.27, p < 0.01] and the dentate gyrus
[F(1,37) = 5.08, p < 0.05]. For both of these regions, post-
hoc analysis showed a significant increase in [3H]-

PK11195 binding in the injured hemisphere of COX-2 -/-
mice, as compared to the injured hemisphere of COX-2 +/
+ mice. To exclude the possibility that the increases in
[*H]-PK11195 binding in the hippocampus were due to
differences between genotypes prior to injury, a binding
assay was performed on sham operated COX-2 +/+ and
COX-2 -/- animals. There was no difference in [3H]-
PK11195 binding between these two groups (data not
shown).

Discussion

The majority of reports examining contributions of the
two COX isoforms to neuroinflammation have focused
on a causative role for the COX-2 isoform. Much of the
emphasis on COX-2 may result from the availability and
therapeutic success of COX-2-selective inhibitors. How-

Page 6 of 9

(page number not for citation purposes)



BMC Neuroscience 2009, 10:108

http://www.biomedcentral.com/1471-2202/10/108

Table I: Binding of [3H]-PK1 1195 following cortical contusion injury in COX-1 +/+ and COX-1 -/- mice.

COX-1 +/+ COX-1 -/-

Brain Region Uninjured Injured Uninjured Injured
CAl 5.35+0.97 5.55 £ 1.07 3.71 £ 0.50t 4.46 + 0.38*t
CTX 3.01 £0.23 3.63£0.70 295+022 3.36 £0.35
DLG 2.65+0.18 4.09 + 0.79* 248 +0.14 4.15 £ I.10*
LPM 283 +£0.15 3.72 £ 041%* 2.66 + 0.26 3.87 £ 0.85*
DG 5.00 + 1.58 7.15 £ 2.52% 4.66 + 0.54 6.59 + 0.78*
VPL/VPM 2.16£0.14 2.56 + 0.27* 2.07 £ 0.18 2.54 + 0.40*

Binding studies conducted on mice euthanatized 9 days after injury. Data is expressed as mean + SD of nCi/mg of wet tissue. * represents significant
changes compared to the uninjured hemispere; T represents significant changes compared to the corresponding hemisphere of the COX-1 +/+
animals. CAl, CAl region of the hippocampus; CTX, cortex; DLG, dorsal lateral geniculate nucleus; LPM, lateral posterior nucleus; DG, dentate

gyrus; VPL/VPM, ventral posteriolateral/medial thalamic nucleus.

ever, studies utilizing COX-1-deficient [29] or COX-2-
deficient [30] mice have shown that inactivation of COX-
1 reduces neuroinflammation whereas COX-2 inactiva-
tion worsens the neuroinflammatory response. Further-
more, in both humans and animal models, TBI results in
the prolonged accumulation of COX-1 expressing micro-
glia in the region of the developing lesion [2,3]. Therefore,
findings from previous reports would support the strategy
of COX-1 inactivation as a potential method for improv-
ing outcomes following TBI. However, as described in the
current study using the MWM method of determining
cognitive functioning, there was no identifiable effect of
COX-1 deficiency on behavioral outcomes following TBI
in mice.

The strategy of using pharmacological inhibition of COX-
2 for amelioration of behavioral outcomes resulting from
TBI has produced differing results. In rats, COX-2 inhibi-
tion has been shown to improve cognitive functioning as
determined by the MWM following a severe 3 mm CCI
[31] and by the Barnes maze following an impact-acceler-
ation model of diffuse TBI [32]. However, Dash et al. [24]
did not observe any differences in MWM performance
between administration of the COX-2 inhibitor celecoxib

or vehicle, following a milder 2 mm CCI. Another experi-
mental brain injury study failed to see an improvement in
the MWM following COX-2 inhibitor administration to
juvenile rats [17]. When the weight drop model was used
to induce brain injury, the COX-2 inhibitor nimesulide
did not improve Neurological Severity Score (NSS) [15].
Furthermore, the MWM was recently used as an outcome
measure following CCI performed on COX-2 null mutant
mice. As we observed in our current study, Ahmed et al.
found no significant cognitive effect resulting from COX-
2 gene deletion following a 1.2 mm CCI in mice [19].

In addition to the behavioral results discussed above,
there have also been inconsistent findings with studies
using biochemical and histological endpoints to examine
the effectiveness of COX-2 inhibition following TBI.
Gopez et al. [31] showed that COX-2 inhibition decreased
neuronal expression of the apoptotic marker, activated
caspase-3, and reduced PGE, levels in the brain. Hickey et
al. [17] also found that COX-2 inhibition decreased PGE,
production, but this decrease was not accompanied by
decreased brain edema or increased tissue sparing, an
effect also seen by Koyfman et al. [15]. Further investiga-
tion on neuroprotective effects of COX-2 inhibition up to

Table 2: Binding of [3H]-PK 1195 following cortical contusion injury in COX-2 +/+ and COX-2 -/- mice.

COX-2 +/+ COX-2-/-

Brain Region Uninjured Injured Uninjured Injured

CAl 322+082 3.88 £ 0.47* 297 £ 0.61 4.89 + 1.43%}
CTX 272 £0.43 4.05 + 0.87* 2.77 £ 042 4.09 £+ 0.70*
DLG 2.28 £ 0.20 3.36 + 0.84* 2.24 + 031 3.40 £ 0.66*
LPM 251 £0.23 3.40 £ 0.62* 2.52 £ 0.30 3.68 £ 0.92*
DG 4.66 + 1.17 5.87 + 0.80* 4.36 +0.96 6.63 + |.59%F
VPL/VPM 2.02+0.14 2.41 + 0.20* 1.97 £ 0.25 245+ 0.41*

Binding studies conducted on mice euthanatized 9 days after injury. Data is expressed as mean + SD of nCi/mg of wet tissue. * represents significant
changes compared to the uninjured hemisphere; 1 represents significant changes compared to the corresponding hemisphere of the COX-2 +/+
animals. CAl, CAl region of the hippocampus; CTX, cortex; DLG, dorsal lateral geniculate nucleus; LPM, lateral posterior nucleus; DG, dentate

gyrus; VPL/VPM, ventral posteriolateral/medial thalamic nucleus.
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72 hours following injury showed no significant change
in degenerating neuronal cell bodies, as detected with
fluoro-jade B, or in DNA fragmentation, as determined by
TUNEL staining [18]. In contrast, COX-2 null mutants
subjected to a 1.2 mm CCI did show a significant decrease
in TUNEL positive cells at 24 hours after injury [19]. In
our current study, we observed a 6% difference in the
amount of cortical tissue spared between the COX-2 +/+
mice and COX-2 -/- mice. However, cortical tissue sur-
rounding the epicenter of the cortical impact is heavily
damaged, both in cell bodies and axonal processes
[22,33]. Because we did not identify improvements in
cognitive outcomes resulting from the deficiency of COX-
2, the biological significance of the observed 6% improve-
ment in cortical tissue sparing in COX-2-deficient mice is
currently not clear.

Recently, there have been conflicting reports as to the spe-
cificity of [3H|-PK11195 for labeling activated microglia.
Multiple neurodegeneration studies have shown a strong
correlation between ex vivo binding of racemic or the (R)
enantiomer of [3H]-PK11195 and immunohistochemical
markers of microglia [27,28,34-36]. Some of these studies
have also shown a correlation between [3H|-PK11195
binding and immunohistochemical markers of reactive
astrocytes, though the correlation coefficient is much
lower than with activated microglia [25,27]. Additionally,
[3H]-PK11195 binding sites have been found on neu-
trophils [37], although these cell types are significantly
decreased or undetectable by seven days post-injury [38-
41]. Therefore, although the increase in [3H]-PK11195
binding following brain injury is most often associated
with activated microglia, the contribution of other cell
types cannot be excluded. Recently, the brains of COX-2-
deficient mice were shown to exhibit increased activation
of both microglia and astrocytes following lipopolysac-
charide administration [30]. Thus, the increased [3H]-
PK11195 binding that we observed in COX-2-deficient
mice may indicate an increased inflammatory response
involving multiple cell types.

Conclusion

In conclusion, we could identify no significant cognitive
effect that resulted from the deficiency of either COX-1 or
COX-2 following TBI in mice. COX-2 gene deletion pro-
duced minor (6%) protection from progressive cavitation
while at the same time there was increased microglia acti-
vation in the hippocampus. The lack of consensus regard-
ing the benefits or limitations of inhibiting COX-1 or
COX-2 for treatment of TBI warrants further research to
examine the potential of this strategy.
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