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Abstract

Background: Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised
hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN
can be modulated by physical exercise, stress and environmental changes in these animals. Since it
is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally
changed, this study investigates the responsiveness of AHN to voluntary running and to
environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus).

Results: Statistical analyses show that running had no impact on cell proliferation (p = 0.44),
neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the
laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis
are not related to interindividual differences of running wheel performance (r, = -0.09, p = 0.79).
There is a correlation between the number of proliferating cells and the number of cells of neuronal
lineage (r, = 0.63, p < 0.001) and the number of pyknotic cells (r;= 0.5, p = 0.009), respectively.

Conclusion: Plasticity of adult neurogenesis is an established feature in strains of house mice and
brown rats. Here, we demonstrate that voluntary running and environmental changes which are
effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This
indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell
proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader

adaptive strategy to a natural vs. domestic environment is unknown.

Background

In the dentate gyrus of the mammalian hippocampus pro-
genitor cells continuously generate neurons throughout
adulthood [1]. Adult hippocampal neurogenesis (AHN)
occurs in various investigated mammals [2], including
primates [3] and humans [4] but is low or missing in bats
[5]. Among wild living mice and voles, levels of AHN can
vary to a great extent, but it remains similar in taxonomic
closely related species [6,7]. Two main findings have

emerged from studies in laboratory mice and rats on the
function of these new neurons and the regulation of AHN.
First, the functional role of newly generated neurons has
remained controversial. There have been reports that
AHN correlates positively with hippocampus-dependent
learning tasks, especially with spatial learning [8-11]. On
the other hand, complete elimination of adult hippocam-
pal neurogenesis has no or only minimal effects on a large
number of behavioural measures in mice [12]. Second,
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adult neurogenesis in laboratory rodents varies exten-
sively between species and strains [13,14], and can be
modulated by various internal and external factors. Trig-
gers such as physical exercise, enriched environment
[15,16] and growth factors like BDNF or IGF-1 stimulate
AHN [17]. Age, stress and impoverished environment in
contrast have a negative regulatory effect on the produc-
tion of new neurons [18-20].

Physical exercise is a strong stimulator of cell proliferation
and neurogenesis. In laboratory rodents it enhances the
amount of cell proliferation and neurogenesis up to three
fold [21]. These rodent findings have attracted much
interest, because triggering of AHN through physical exer-
cise might improve cognitive abilities in disabled or
healthy humans, possibly by inducing specific gene
expression patterns [22,23].

However, it remains an open question whether experi-
mental data from rodents can be extrapolated to humans,
or which species could serve as animal model -laboratory
or wild rodents. It is also not known whether cell prolifer-
ation and neurogenesis in wild living mice can be experi-
mentally modulated. Thus, this study investigates the
responsiveness of AHN to voluntary running in the wild
caught long-tailed wood mouse (Apodemus sylvaticus). Fur-
thermore, we investigated whether individual differences
in neurogenesis and level of voluntary exercise are related,
and if environmental changes alter AHN.

The long tailed wood mouse is genetically one of the clos-
est relative to Mus musculus [24]. Ecologically, it is also one
of the best-studied wild mouse species. Wood mice are
commonly distributed throughout Europe, parts of Asia
and north-western Africa. They are characterized as agile
animals with patrolling behaviour and good spatial mem-
ory having a territory size up to 25'000 m2 [25,26]. In
behavioural tests wood mice show moderately better
learning abilities compared to bank voles [27].

In this study, proliferating cells were visualized with the
endogenous marker Ki-67 [28-30], a chromosome-associ-
ated protein present during the active phase of the cell
cycle (G,-M). Developing neurons were immunohisto-
chemically detected with a marker against doublecortin
(DCX). DCX is a microtubule-associated protein
expressed in migrating cells and during the initial period
of morphological maturation and functional integration
of the developing neuron [31-33]. It has been shown that
DCX is a reliable marker for neurogenesis since it moni-
tors specifically progenitor cells of neuronal lineage and
young neurons [34]. Pyknotic cells were visualized using
a Giemsa stain.

We compared the relation of wheel running activity dur-
ing 14 days and AHN in wild caught wood mice. In order
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to test for effects of captivity, AHN was assessed in animals
immediately after capturing and compared to AHN in ani-
mals kept in home cages with and without running
wheels.

Results

Exercise and cell proliferation, neurogenesis and apoptosis
The three experimental groups, baseline, control and run-
ning group, (see Methods) were tested for differences in
cell numbers. Statistic analysis of Ki67 positive cells (Fig.
1a) showed no difference in proliferation rates between
the three experimental groups (p = 0.443). Analysis of
neurogenesis, using DCX as a marker for cells of neuronal
lineage (Fig. 1b), also showed no group differences (p =
0.938). Likewise, comparison of the number of pyknotic
cells (Fig. 1c) revealed no significant differences (p =
0.576). Data of cell counts are shown in Table 1, visuali-
zation of immunohistochemical stains are shown in Fig.
2 for Ki67 (Fig. 2a), DCX (Fig. 2b, d, e), and a Giemsa-
stained pyknotic cell (Fig. 2¢).

Correlation of the numbers of proliferating cells, cells of
neuronal lineage and pyknotic cells

Analysis of the pooled data from all experimental groups
showed a strong correlation between the number of pro-
liferating cells and the number of cells of neuronal lineage
(r,=10.63, p < 0.001). Group-separated analysis revealed a
correlation in both the running (r,= 0.66, p = 0.026) and
the control group (1,=0.78, p = 0.013). Correlation in the
baseline group was marginally significant (r,= 0.75, p =
0.052). Total numbers of pyknotic cells and proliferating
cells were also correlated (1, = 0.50, p = 0.009), but there
was no correlation between the number of DCX positive-
and pyknotic cells (r;= 0.18, p = 0.387).

Running and cell parameters

There was no correlation between performance and the
amount of Ki-67 positive cells (r;= 0.29, p = 0.39, Fig. 3a),
cells of neuronal lineage (r,=-0.09, p = 0.79, Fig. 3b) and
pyknotic cells (r,=-0.38, p = 0.28, Fig. 3c), respectively.
Performing mice could be grouped in three activity
classes. Five mice were allocated to the first category that
did less than an average of 1000 revolutions per day. The
second category comprised three animals that ran
between 1000-3000 revolutions, whereas the third cate-
gory included three animals that performed more than a
daily amount of 10'000 revolutions on average. Daily run-
ning activity of each individual varied considerably. On
average, the wild animals performed significantly less
than C57BL/6 laboratory mice, under identical experi-
mental conditions, (p = 0.047; Klaus et al.,, in prepara-
tion).

No gender specific difference within experimental groups
Within the limits of statistical power set by the low
number of females in this study, no gender dependent dif-
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Group comparison of cell numbers. Experimental
groups (baseline = investigated directly after trapping; con-
trol = two weeks of laboratory housing; runner = two weeks
of voluntary running) do not differ in their number of prolif-
erating cells (a, Ki67), young neurons (b, DCX) and pyknotic
cells (c). Analysis was performed with general linear model.
Bars represent SD.
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ference were found in any experimental group for any of
the parameters investigated (data not shown).

Discussion
In this study we investigated for the first time whether
wheel running has an impact on cell proliferation, neuro-
genesis and cell death in wild long-tailed wood mice, but
found none.

Voluntary running affects cell proliferation and
neurogenesis in laboratory rodents but not in wood mice
Physical exercise leads to neuromorphological and neu-
robehavioural alterations in the brain of laboratory
rodents. It increases cell proliferation and neurogenesis
[16,35], enhances dendritic spine density on granule cells
[36,37], stimulates neurotrophic factor activity [22,38]
and correlates with improved cognitive functions in spa-
tial [35,39,40] and non-spatial memory tasks [41,42]. In
rats, hippocampal BDNF is increased after two nights of
free access to a running wheel [23] and a single week of
exercise is sufficient to improve memory performance in
the water maze task [43]. The effects of physical exercise
on cell proliferation and neurogenesis, as well as neurobe-
havioral features, are age-independent [41,44-46].

Here, we demonstrate that in wild wood mice voluntary
running has no impact on cell proliferation, neurogenesis
and apoptosis in the hippocampus. Not only does physi-
cal exercise not influence cell proliferation and neurogen-
esis, but AHN seems also resistant to changes in the
environment as indicated by the lack of differences
between animals sacrificed immediately after trapping
and those housed in the laboratory.

Why is there no exercise effect in wood mice?

Exercise-induced increase in neurogenesis and cell prolif-
eration may be counterbalanced by stress, which has a
suppressive effect on granule cell genesis [47]. However,
as the extreme environmental change from natural living
conditions to laboratory housing, be it with or without
running wheel, did not cause changes in any AHN-related
cellular processes, we expect that stress is not involved. In
daily home cage observation we did not see any sign of
stress or discomfort. No stereotypic behaviour could be
detected [48]. In addition a previous study with wild
wood mice showed that short-term captivity is not stress-
ful enough to decrease adult neurogenesis [7].

In the natural habitat of wild wood mice daily running
belongs to their behavioural pattern [25]. If running stim-
ulates cell proliferation and neurogenesis similarly in wild
mice as it does in laboratory rodents it might be argued
that proliferation and neurogenesis in the natural habitat
proceed at a level that, under laboratory conditions, is just

Page 3 of 8

(page number not for citation purposes)



BMC Neuroscience 2009, 10:43

gcl

hi

e

http://www.biomedcentral.com/1471-2202/10/43

Figure 2

Immunohistochemistry staining. a: Ki67 staining of the septal part of the dentate gyrus subgranular zone. Two clusters of
proliferating cells, indicated in brown, are located in the subgranular zone (gcl: granule cell layer; hi: hilus). Scale bar = 20 um.
b: DCX positive cells (brown) in the septal part of the dentate gyrus subgranular zone. The DCX immunostaining is counter-
stained with haematoxylin. Young neurons extend long dendrites into the granular and molecular cell layer. Scale bar = 20 um
c: Condensed chromatin of a pyknotic cell in the subgranular zone is visualized with Giemsa staining in plastic embedded tissue.
Arrow indicates a pyknotic cell. Scale bar =5 pm d: Qualitative comparison of the amount of young neurons (stained in

brown) in the subgranular zone of a baseline wood mouse (d) and a running wood mouse (e). No difference in the number of

DCX positive cells can be seen. Scale bar = 20 um.

being maintained by access to a running wheel. Therefore,
a ceiling effect of AHN, reached through natural activity,
might be the reason why running under laboratory condi-
tions does not result in a further enhancement, as the pro-
duction of new neurons would be already at the
maximum. However, individual performance of wood
mice varied considerably without effecting AHN. Some

mice ran on a low level of about 100-3000 revolutions
while other animals performed on higher levels of
16'000-40'000 revolutions on average. In laboratory
mice, three hours of performance (~3500 mean daily
wheel revolutions) is enough to significantly increase cell
proliferation, cell survival and total number of new neu-
rons [44]. Restricting the analysis to wild mice which ran

Table I: Estimates of proliferating cells, young neurons and pyknotic cells in the dentate gyrus

baseline control running CE Sampling sites* Sections analyzed* Cells counted*
Ki67 4'047 4315 4'744 0.049 14 (12-15) 695 (356-1001)
SD 772 1'525 977
DCX 15'840 15204 14'871 0.09 339(273-486) 14 (10-16) 157 (64-319)
SD 5'426 7238 4019
pyknotic 223 279 283 0.09 27 (21-30) 48 (17-78)
SD 148 122 1o

Average numbers of young neurons, visualized immunohistochemically through Doublecortin (DCX), are obtained from stereological estimates
using the optical fractionator method. Proliferating cells (Ki67 positive cells) and pyknotic cells are counted manually and multiplied by the section
fraction to estimate total cell numbers. All parameters were analyzed in every sixth section. SD stands for standard deviation and CE is coefficient

of error. *Values are means with ranges in parentheses.
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Performance and cell parameters. There is no correla-
tion between performance (log total run) over the two
weeks and the amount of proliferating cells (a, Kié7 positive
cells), young neurons (b, DCX positive cells) and pyknotic
cells (c). Data are represented in logarithmic numbers.
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between 3500 and 63'000 revolutions per active phase, no
exercise related alteration was found in these animals
when compared to non runners or mice of the baseline
group. Even if low performance might be enough to main-
tain a natural high level of AHN in wild mice, we would
expect a decrease of AHN in animals kept without access
to a running wheel, which is not the case. The low rho val-
ues of all correlations also stress the independence of cell
proliferation, neurogenesis or cell death from physical
activity.

Natural living conditions may regulate AHN over a time
span that outlast the experimental period of two weeks. A
long-term regulation that maintains a constant pool of
functionally distinct young neurons may be an adaptive
strategy in the face of constantly changing natural living
conditions. To our knowledge there is no data on the
duration of a running-induced effect on adult neurogene-
sis in house mice and brown rats once the exercise has
ceased. In this context it is remarkable that laboratory
housing of wild wood mice does not lead to alterations in
AHN despite the environmental change from nature to
laboratory cage, which one could consider as a severe loss
of environmental stimuli.

AHN stimulation by running — a species-specific effect or a
trait of domestication?

In laboratory mice regulatory mechanisms of prolifera-
tion and neurogenesis are related to the genetic back-
ground [13,14], which in turn is the result of
unintentional selective breeding that can have profound
consequences on physiology, morphology and behaviour.
It is unknown if the adaptive response of AHN to stimu-
lating factors is a naturally occurring feature which labo-
ratory animals have inherited from their ancestors. At
least, the finding that running and environmental changes
affect AHN in laboratory rodents but not in wild wood
mice indicates that different regulatory mechanisms are
operative in these species. Another possible source for reg-
ulation differences between wild and laboratory rodents is
domestication. Domestication is accompanied by an irre-
versible reduction of 10.2% of hippocampus volume in
rats [49] and changes in behaviour including a reduced
sensitivity to predators in rodents, suggesting diminished
anxiety and fear responses [50]. In a long-term study of
selective breeding exclusively for tameness in silver foxes,
Trut (1999) has shown that in the course of domestication
the timing of the postnatal development of neurochemi-
cal and neurohormonal mechanisms changes [51]- altera-
tions that have the potential to affect the development of
the hippocampus as one of the brain structures that differ-
entiate late in ontogenesis.

Page 5 of 8

(page number not for citation purposes)



BMC Neuroscience 2009, 10:43

Conclusion

Although this study is limited by the fact that we only
investigated one species, it emphasizes the importance to
examine AHN in a broader, evolutionary context [52].
Attempts to translate data from rodents to man in the field
of adult neurogenesis should be based on a large variety
of possible regulatory mechanisms. Studies in humans are
limited for obvious reasons, and it is not clear if humans
should be characterized as domesticated or wild, or if this
characterization is required at all. Studying factors regulat-
ing AHN in different rodent species is a necessary step in
charting white spots on the map of regulatory pathways of
AHN. The finding that neither running nor environment
influence adult hippocampal neurogenesis in wild long-
tailed wood mice (one of the closest relatives of house
mice) indicates that different regulatory mechanisms are
operative in this species compared to laboratory mice and
rats. Whether these findings reflect domestication effects,
specific genetic background or species-specific environ-
mental adaptation of the animals is yet unknown. More
studies on various wild mouse species are required to ver-
ify differences in regulatory mechanisms of AHN between
wild and laboratory mice, hopefully elucidating the
source of these differences. The widespread use of labora-
tory rodents in translational research on AHN makes it
important to address these questions.

Methods

Animal

27 wood mice (Apodemus sylvaticus), 21 males and six
females, were trapped in live-traps in the park around the
University of Ziirich in spring. Traps were controlled every
2 hours and mice either immediately perfused (baseline
group, total 7 (5 m/2 f)) or singly housed for 14 days in
cages containing either a running wheel (running group,
total 11 (9 m/2 f)) or no environmental enrichment (con-
trol group, total 9 (7 m/2 f)). Mice had free access to run-
ning wheels (& 14 cm). All cages were provided with
bedding material, fresh hay, water and standard labora-
tory mouse food pellets supplemented with fruits and
seeds. Mice were exposed to a 12 hours light-dark phase.
Wild animals were classified as juvenile, adult or old
based on tooth wear, sexual maturity, marks of previous
pregnancies and body weight in correlation to season as
done and described before [6]. All experiments were
approved by the veterinary office of the Kanton of Ziirich.

Histology

Mice of the running and control groups were sacrificed
immediately after the active phase. They were anaesthe-
tized with Pentobarbital (50 mg/kg body weight) and per-
fused transcardially with cold phosphate-buffered saline
(PBS) followed by 0.6% sodium sulphide solution in PBS
and cold 4% paraformaldehyde with 15% saturated picric
acid in PBS. Brains were removed, hemispheres separated
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and postfixed over night. After postfixation, right hemi-
spheres were transferred into 30% sucrose in PBS and fro-
zen after saturation. For immunohistochemistry 40 pm
sagittal sections were cut and stored at -20°C in a cryopro-
tective solution until further processing. For Giemsa stain-
ing left hemispheres were dehydrated for a total of 9 h in
alcohol (4 x 70%, 4 x 96%, 2 x 99%), incubated for ten
days in infiltration solution and embedded in glycometh-
acrylate (Technovit 7100, Heraeus Kulzer GmbH, Wehr-
heim, Germany).

Ki67 and DCX staining

For Ki67 immunohistochemistry, free floating sections
were incubated for epitope retrieval in citrate buffer, pH
6.0, at 90°C for 40 min, followed by incubation in endog-
enous peroxidase blocking reagent, 0.6% H,O, in TBS-Tri-
ton (0.05% Triton X-100 in TBS, pH 7.4) for 30 min at
room temperature (RT). For DCX immunohistochemis-
try, free floating sections were microwaved at 600 W in cit-
rate buffer, pH 6.0, for 1.5 min for epitope retrieval,
followed by incubation in endogenous peroxidase block-
ing reagent (see above). Thereafter sections were preincu-
bated in 2% Serum (for Ki67: NGS; for DCX: NRS) + 0.1%
BSA + 0.25% Triton in TBS, for 60 min at RT. Afterwards,
sections were incubated with primary antibody Ki67 (pol-
yclonal rabbit NCL-Ki67p, Novocastra, 1:5000 in preincu-
bation solution) and DCX (polyclonal goat IgG, Santa
Cruz Biotechnology, 1:1000 in preincubation solution)
overnight at 4°C. Incubation with secondary antibodies
(for Ki67: biotinylated goat anti-rabbit IgG 1:1000 +
2%NGS + 0.1%BSA in TBS; For DCX: rabbit anti-goat IgG,
Vectastain Elite ABS Kit, 1:1000 + 2%NRS + 0.1%BSA in
TBS) was performed for two hours followed by incubation
with streptavidin-biotin complex (Vectastain Elite ABC
kit) and stained with DAB as chromogen. Until incuba-
tion with the primary antibody all rinses in between incu-
bations were made with TBS-Triton, afterwards with TBS
alone.

Giemsa staining

Glycomethacrylate-embedded left hemispheres were cut
horizontally at 20 pm with a metal knife on a Leitz Rotary
microtome. Every sixth section was stained according to
the protocol of Iniguez [53]. Incubation in Giemsa stain-
ing solution (Giemsa stock solution 1.09204.0500,
Merck, Darmstadt, Germany) diluted 1: 10 in buffer (67
mmol KH2PO4) at RT for 40 min., rinsed in 1% acetic
acid for 10 sec. and differentiated in 3 x 99% alcohol,
cleared in Xylol and mounted with Eukitt.

Measurements

Run distance

A controller system (AMS Software and Electronic GmbH,
Flensburg Germany) registered the animal's running
activity in one hour bins.
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Total DCX positive cell number

The number of DCX positive cells was estimated in every
sixth section using the optical fractionator [54] with Ster-
eolnvestigator software (MicroBrightField Inc. Williston,
USA). This stereological method provides unbiased esti-
mates of neuron number. Assumptions about neuron size
and shape are not necessary and estimates are unaffected
by tissue shrinkage. The microscope used was a Zeiss Axi-
oplan with a 100x oil-immersion lens. Cells were counted
in a frame of 30 - 30 pm with a x, y-step size of 120 pum.
Total DCX-positive cell number (N) is calculated using
the formula N = XQ- x (t/h) x (1/asf) x 1/ssf, where Q- =
total number of cells counted, t = section thickness, h =
height of optical disector, asf = area of sampling fraction =
a(frame)/a(x, y step) and ssf = section sampling fraction.

Total Ki6é7 positive cell number

Proliferating cells were counted exhaustingly in every
sixth section on an Olympus light microscope using a 63x
oil-immersion lens and multiplied by the section sam-
pling fraction to obtain estimated total cell number. Cells
in the top focal plane of the section were not counted. All
Ki67 positive cells in the subgranular layer (SGL) and in
the granule cell layer (GCL) (reaching 1/3 into cell layer;
towards molecular layer) of the right hemisphere were
counted.

Total pyknotic cell number

Estimates of total apoptotic cells were made as described
for Ki67, using a Zeiss Axioplan microscope with a 40x
oil-immersion lens. Pyknotic cells were easily identified
by their strongly stained nuclei whose chromatin con-
densed into peripherally (C or doughnut shape), solid or
multiple cell bodies [7]. Pyknotic cells were counted man-
ually in the same zone as proliferating cells. Again, cells in
the top focal plane of the section were not considered.

Statistics

Only adult animals are included in statistical calculations.
Group comparisons of total number of proliferating cells,
new born neurons and pyknotic cells were performed
with general linear model (GLM). Statistical significance
level was determined at 5%. Correlation analyses were
performed with paired two-group Spearman rank correla-
tion. Statistical analyses were performed with SPSS soft-
ware (version 17).

The brightness and contrast of microphotographs were
adjusted to resemble the appearance of the sections under
the microscope. No local changes were made to the
images.
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