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Abstract
Background: Dysphagia is a leading complication in stroke patients causing aspiration pneumonia,
malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one
hand modification of eating behaviour or swallowing technique and on the other hand facilitation
of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation
(TTOS) is an established method to treat patients with neurogenic dysphagia especially if caused
by sensory deficits. Little is known about the possible mechanisms by which this interventional
therapy may work. We employed whole-head MEG to study changes in cortical activation during
self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were
analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of individual
SAM data was performed using a permutation test.

Results: Compared to the normal swallowing task a significantly increased bilateral cortical
activation was seen after oropharyngeal stimulation. Analysis of the chronological changes during
swallowing suggests facilitation of both the oral and the pharyngeal phase of deglutition.

Conclusion: In the present study functional cortical changes elicited by oral sensory stimulation
could be demonstrated. We suggest that these results reflect short-term cortical plasticity of
sensory swallowing areas. These findings facilitate our understanding of the role of cortical
reorganization in dysphagia treatment and recovery.

Background
Human swallowing is a complex neuromuscular proce-
dure modulated by sensory feedback [1,2]. Impairments
of sensation have been implicated in aspiration after
stroke [3-7] and are known to result in short-term dys-
phagia even in healthy subjects when induced by oropha-
ryngeal anaesthesia [8,9]. While many patients experience

recovery of swallowing within the first few weeks after
stroke, 40% of dysphagic stroke patients develop aspira-
tion pneumonia which in turn increases the use of artifi-
cial feeding, length of hospital stay, and mortality [10].
Despite the high incidence of aspiration pneumonia after
stroke, treatment options for accelerating the recovery of
swallowing by improving physiology and reducing aspira-

Published: 30 June 2009

BMC Neuroscience 2009, 10:71 doi:10.1186/1471-2202-10-71

Received: 11 February 2009
Accepted: 30 June 2009

This article is available from: http://www.biomedcentral.com/1471-2202/10/71

© 2009 Teismann et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19566955
http://www.biomedcentral.com/1471-2202/10/71
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Neuroscience 2009, 10:71 http://www.biomedcentral.com/1471-2202/10/71
tion remain limited. Current strategies of swallowing ther-
apy involve on the one hand modification of either eating
behaviour or swallowing technique and on the other
hand facilitation of swallowing with the use of TTOS.

The anterior faucial pillars (AFP) are bilaterally located on
the oral side of the velum and form part of the soft palate.
They are innervated by the maxillary branch of the trigem-
inal nerve and the glossopharyngeal nerve. About 80 years
ago sensory stimulation was first advocated as a method
for facilitating swallowing [11]. Since then stimulation of
the AFP and other parts of the oropharynx became a com-
mon treatment for dysphagia [12-15]. Clinical studies
showed that tactile stimulation of the AFP increases swal-
lowing speed and facilitates deglutition for several min-
utes. Different groups using electrical stimulation even
found a better outcome in stroke patients showing
reduced aspiration [16] and a decrease of gastrostomies
[17] while others found no changes in laryngeal closure,
pharyngeal transit time or aspiration severity [18]. Until
now, the underlying basic physiological consequences
induced by oropharyngeal stimulation are still unknown
[19]. First results in this field of research revealed an
increased cortical excitability evoked by pharyngeal stim-
ulation [20,21].

Magnetoencephalography (MEG) can monitor cortical
activity with a high temporal and spatial resolution [22].
Motor tasks have been shown to result in event-related
desynchronisations (ERD) of the cortical beta rhythm in
cortical motor areas [23,24]. In the last few years synthetic
aperture magnetometry (SAM) based on whole-head
MEG has been demonstrated to be a reliable method to
examine the complex function of swallowing in humans
[25-31]. While the artifacts caused by oropharyngeal mus-
cle activation during the act of swallowing make it diffi-
cult to study activation in subcortical and bulbar
structures, the cortical areas especially the sensorimotor
areas can be examined in detail.

In the present study we employed whole-head MEG and
SAM analyses to study cortical activity during self-paced
volitional swallowing with and without preceding TTOS.
This simple stimulation paradigm was chosen due to its
non invasivness and its easy bedside application. We
hypothesized an increased swallowing related activation
of the somatosensory cortex after oropharyngeal stimula-
tion compared to the baseline condition without prior
stimulation.

Results
Behavioral data
All participants tolerated the study without any difficulty.
No coughing and, in particular, no signs of aspiration
occurred during stimulation or measurements. The two
conditions, after and without TTOS, did not differ in swal-

lowing behaviour. The amount of water swallowed during
the two compared measurements was identical for each
subject. Number of swallows (normal swallowing: 39 –
141 swallows in 15 min, mean 73.5; oral stimulation: 41
– 139, mean 73.7; p = 0.774) as well as duration per swal-
low (1.13 – 2.88 s, mean 2.06 s, oral stimulation: 1.37 –
2.68; mean: 2.15; p = 0.7945) did not differ between the
two tasks. RMS of EMG amplitude across the swallow
interval (M0 – M2) showed no difference in EMG power
by comparison swallowing after and without oropharyn-
geal stimulation (p = 0.8347).

Time-frequency plots
Wavelet group analysis of MEG sensor recordings revealed
distinct activation in the higher alpha and lower beta fre-
quency band in the parietal sensors with a reduction of
activation at about M1 and a re-increase after about 400 –
600 ms. This effect was observable in both hemispheres
and conditions (see figure 1a, b). A difference plot of both
conditions demonstrates stronger desynchronization in
the stimulation condition compared to the reference
measurement (see figure 1c). According to these results
MEG data were then filtered in the alpha and beta band.

SAM Analysis
Group analysis of SAM results revealed significant event
related desynchronizations (ERD) in the beta frequency
band located in the primary sensorimotor cortex (BAs 4,
3, 1, and 2) in both conditions (p < 0.05) (see figure 2).
The peak of the ERD was located bilaterally in the same
area around the central gyrus in both conditions. In the
alpha frequency band and other cortical areas no signifi-
cant activation was observed in either of the two condi-
tions. Comparison of both conditions revealed a
significantly stronger activation after TTOS compared to
the normal swallowing task (p < 0.05). The maximum
pseudo-t value increased in the TTOS condition (34.1% in
the right hemisphere, 13.6% in the left hemisphere).

To analyze the chronological changes during swallowing
separate calculation of SAM images for each 200 ms inter-
val was calculated. Here the early intervals represent the
oral phase of deglutition while the later intervals are part
of the pharyngeal swallowing phase. A clear distinction
between the two phases based on the submental EMG
recordings is not possible. This revealed ERD of rhythmic
brain activity within sensorimotor cortex in each individ-
ual subject and interval. Group analysis of the normal
swallowing paradigm showed no significant activation
during the first 400 ms. Only small left sided activation
appeared in the third time interval. Between 600 ms and
1 s right hemispheric lateralization of activation could be
observed. In contrast, after TTOS significant left lateral-
ized activation was seen in all 5 time intervals. Right hem-
ispheric activation increases over time with a slight
decrease in the last time frame (see figure 3).
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Discussion
The present study revealed an increment of cortical swal-
lowing activation after TTOS in healthy subjects. By this
physiological changes on the cortical level induced by this
widely used tool of dysphagia rehabilitation are shown.

Behavioural changes after oropharyngeal stimulation
Different behavioural studies examined the effect of
oropharyngeal stimulation before. Either thermal or taste
stimuli are supposed to heighten the sensitivity for swal-
lowing in the oral cavity thereby leading to a more rapid
triggering of the swallowing reflex [19]. Today this tech-
nique is often used in the treatment of patients with neu-
rogenic dysphagia to facilitate a delayed or absent
swallowing response. There is little data reporting the
effectiveness of this therapy.

Cold stimulation of the AFP before swallowing hastened
the onset of the pharyngeal swallowing phase and
reduced the swallowing latency [32,33]. Lazzara and co-
workers could show that TTOS on 25 patients with differ-
ent neurologic diseases resulted in an improved triggering
of the swallowing reflex in 23 of these patients [33]. Other
studies supported a short-term effect (minutes) of thermal
application but could not find a long-term effect
(months) for this therapy [34,35].

Also taste stimuli have been shown effects on swallowing.
They reduced the delay in swallowing initiation, hastened
triggering of pharyngeal swallowing in patients with neu-
rogenic dysphagia and even led to a reduced frequency of
radiographically observed aspiration. This suggests that
afferents from the oral-pharyngeal chemoreceptors can
facilitate deglutition [36].

Wavelet analysis of the parietal areasFigure 1
Wavelet analysis of the parietal areas. X-axis represents time in seconds related to M1. Y-axis represents frequencies in 
Hertz. a + b) In both conditions distinct activation in the higher alpha and lower beta frequency band can be seen with a reduc-
tion of activation at about M1 and a re-increase after about 400 – 600 ms in both hemispheres. c) The difference plot of both 
measurements (without oropharyngeal stimulation minus with oropharyngeal stimulation) reveals variations mainly during 
deglutition (after M1). Similar activation is found in both hemispheres before swallowing onset. Colors represent the level of 
frequency power (fT/Hz), with lower numbers (blue) indicating a decrease in power (ERD) and higher numbers (red) an 
increase in power (ERS). In the difference plot blue corresponds to stronger activation in the measurement after stimulation, 
while red demonstrates stronger activation in the condition without stimulation.
Page 3 of 10
(page number not for citation purposes)



BMC Neuroscience 2009, 10:71 http://www.biomedcentral.com/1471-2202/10/71
Cortical changes after oropharyngeal stimulation
Additionally to the observed and well known behavioural
changes following oropharyngeal stimulation few studies
focussed on its effects regarding the cortical level. The first
study focusing on this topic in 1997 demonstrated a facil-
itation of the cortical pathways by cranial nerve stimula-
tion [37]. Apart from that, electrical pharyngeal
stimulation showed an increase of cortical excitability in
different TMS studies [20,38]. To our knowledge the cor-
tical reaction to TTOS has not been examined yet. In the
present study a significant increase of cortical swallowing
activation was observed after TTOS compared to a swal-
lowing paradigm without stimulation. These findings
demonstrate cortical changes following simple oral stim-
ulation. Analysis of the chronological changes during the
swallowing execution might provide further insights into
the underlying physiological mechanisms. In healthy sub-
jects a time-dependent shift from the left to the right hem-
isphere was found in an MEG swallowing paradigm [29].
Though from the submental EMG data no clear cut
between oral and pharyngeal phase can be defined, it is
likely that the beginning of submental muscle activation
represents at least part of the oral phase, while about 500

ms later and in the end of the recorded submental muscle
activation the pharyngeal phase is taking place.

Although in the present experiment SAM analysis of the
first two 200 ms intervals did not reveal significant activa-
tion in either hemisphere, an increase of right hemi-
spheric activation was seen in the following time intervals.
Therefore the results of the normal swallowing condition
found in the present study are mainly concordant with the
previous investigation. In contrast to this, TTOS revealed
increased bihemispheric activation with predominant
activation of the left somatosensory cortical areas during
the whole swallowing interval. This finding underlines the
hypothesis of hemispheric specialization in swallowing
processing. In lesion studies left hemispheric infarction
was associated with oral stage dysfunction, while dysfunc-
tion of the pharyngeal stage was related to right hemi-
spheric lesions [39,40]. Based on their findings, Daniels
and co-workers suggested a left hemisphere control for
volitional aspects of swallowing and a right hemisphere
control for reflexive swallowing behaviour. This is also
supported by the MEG study of our group mentioned
above [29]. Finally, patients with a chronic pharyngeal

Event related desynchronizationFigure 2
Event related desynchronization. Significant activation in group analysis is shown (p < 0.001). Changes in the beta-fre-
quency-band during swallowing execution compared to the resting stage. a) Significant cortical activation after volitional swal-
lowing without oropharyngeal stimulation. b) Cortical swallowing activation after oropharyngeal stimulation is broader in both 
hemispheres. The color bar represents the t-value.
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stage dysfunction revealed stronger right hemispheric acti-
vation, both in size and time, indicating cortical compen-
sation of their pharyngeal dysphagia [41].

Along this reasoning, TTOS, according to the present find-
ings, may lead to a facilitation of both the oral and the
pharyngeal phase of deglutition. On the other hand it
remains unclear whether the observed effects are related
to functional cortical reorganization or are more unspe-
cific reactions to differences in attention due to the affer-
ent input. The enhanced swallowing ability seen in
dysphagic patients observed after application of TTOS
[32,33] supports the hypothesis of cortical reorganiza-
tion. However, based on the present study we cannot dis-
tinguish whether the observed effects are caused by the
stimulation of the AFP or only by the swallowing of a
chilled bolus.

Our results and their interpretation are also supported by
behavioural studies employing TTOS showing both
changes of oral phase tasks, like a heightened sensitivity of

the oral cavity [19] and a reduced delay in swallowing ini-
tiation, and modification of the pharyngeal phase, like an
improved triggering of the swallowing reflex [32,33].
Though long term changes in swallowing behavior after
TTOS could not be shown yet, our findings may point to
therapeutical approaches in swallowing rehabilitation.
Further studies have to show if stimulation intensity, fre-
quency or treatment duration lead to different results in
swallowing behavior and in the consecutive cortical acti-
vations. Additionally cortical and behavioral changes of
TTOS have to be examined in dysphagic patients.

Conclusion
In the present study we could demonstrate an increase of
cortical activation after thermal tactile oral stimulation.
This is to our knowledge the first study showing cortical
changes elicited by this simple swallowing therapy tech-
nique. Our results provide an insight into the physiologi-
cal mechanisms by which TTOS might lead to the
previously observed facilitation of swallowing. Further
examinations employing TTOS in dysphagic patients have

Event related desynchronizations in the beta frequency band during the five successive 200 ms time intervals of the swallowing execution phase is shown for both groupsFigure 3
Event related desynchronizations in the beta frequency band during the five successive 200 ms time intervals 
of the swallowing execution phase is shown for both groups. Significant activation in the group analysis is shown (p < 
0.05). Estimation of the according swallowing phase is shown. The color bar represents the t-value. The lateralization index for 
each individual time interval and for both conditions is indicated.
Page 5 of 10
(page number not for citation purposes)



BMC Neuroscience 2009, 10:71 http://www.biomedcentral.com/1471-2202/10/71
to show that increased cortical activation is paralleled by
an improved swallowing performance.

Methods
Subjects
Fifteen healthy right-handed volunteers (7 males, 8
females, age range 25 – 57 years, mean 30.4 years) served
as subjects. The local regional ethics committee approved
the protocol of the study. Informed consent was obtained
from each subject after the nature of the study was
explained in accordance to the principles of the Declara-
tion of Helsinki (2008).

Tactile Thermal Oral Stimulation (TTOS)
TTOS was performed by stroking the patient's anterior
faucial pillar with an ice stick. The surface temperature of
the stick was between -1° and 3°C. Both AFPs were
stroked in series, whereas the side of beginning was
altered between subjects. Stroke direction was from top
(medial) to bottom (lateral). We took care that the tongue
was not at all touched by the ice stick. After stroking both
sides three times subjects were instructed to swallow to
eliminate the melt water. This was done 5 times within 2
minutes. This procedure was performed directly before
the corresponding MEG measurement. Due to the startup
procedure of the MEG system the overall time between
stimulation and the beginning of the measurements was
between 2 and 3 minutes.

To eliminate a bias due to the forced swallows directly
before measurement subjects were instructed to swallow 5
times about 3 minutes before the beginning of the MEG
recording in the condition without TTOS.

Intraoral infusion
To facilitate volitional swallowing during MEG recording
water was infused into the oral cavity via a flexible plastic
tube 4.7 mm in diameter attached to a fluid reservoir. The
reservoir bag was positioned about 1 m above the mouth
of each subject when seated. The tip of the tube was placed
in the corner of the mouth between the buccal part of the
teeth and the cheek. The tube was gently fixed to the skin
with tape. The side chosen for tube placement was alter-
nated between subjects but consistent in each subject. The
infusion flow was individually adjusted to the subject's
request and ranged between 8 and 12 ml/min. The aim
was to establish a swallowing frequency of four to six
times per minute. This resulted in a swallowing volume of
about two to three ml. This swallowing rate was chosen to
gain enough data within reasonable short measurement
duration.

MEG recording
In each MEG measurement of 15 min duration subjects
swallowed self-paced without external cue while swallow-

ing acts were recorded and identified by electromyo-
graphic recording. The MEG recording was done with and
without oral stimulation in all 15 subjects investigated. In
8 subjects the normal swallowing task was done first, the
other 7 started with oral stimulation. In each subject, both
measurements were 14 days apart.

MEG data were collected using a whole head 275-channel
SQUID sensor array (Omega 275, CTF Systems Inc.). Mag-
netic fields were recorded with a sample frequency of 600
Hz. The data were filtered during acquisition using a 150
Hz low-pass filter. Recordings were performed while sub-
jects were seated in a comfortably upright position and
watching a self selected silent movie.

By this the level of attention was kept stable and avoided
falling asleep. Vision should be focused on the video
screen during measurement to reduce eye movement arti-
facts. No confound by the movie was expected due to its
continuous presentation during deglutition and the rest-
ing stages.

EMG recording
Submental recording of muscle activation is a simple and
reliable noninvasive screening method for evaluating
swallowing with low levels of discomfort [42]. Another
advantage compared to needle EMG is the broader muscle
spectrum that can be recorded. Disadvantages are higher
inter- and intraindividual variability and a higher artifact
rate [43]. Surface EMG was measured with two pairs of
bipolar skin electrodes (Ag-AgCl) placed on the submen-
tal muscle groups [42,44]. The electrodes were connected
to a bipolar amplifier (DSQ 2017E EOG/EMG system,
CTF Systems Inc., Canada), and the nominal gain was set
at 1. EMG data was high pass filtered with 0.1 Hz before
markers were manually set.

Anatomical MRI
MRI data were acquired on a 3.0 T Scanner (Gyroscan
Intera, Philips Medical Systems, Best, The Netherlands)
with a standard head coil. T1-weighted sagittal anatomical
images with in-plane resolution of 512 × 512 (0.6 × 0.6
mm resolution) and 320 slices (0.5 mm thickness) were
recorded using spoiled gradient echo imaging.

Data analysis
Each individual's EMG signal was used to mark the begin-
ning of main muscle activation (M1) and the end of the
task-specific muscle activity (M2) for every single swallow
(see figure 4). The beginning of the main muscle activa-
tion was defined as an enduring > 100% increase in
amplitude or frequency of the EMG signal after an initial
increase of more than 50% of EMG activity defining the
onset of swallowing preparation. The end of task-specific
muscle activity was defined as a decrease in amplitude or
Page 6 of 10
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frequency of the EMG signal greater than 50%. To esti-
mate the maximal null distribution (see below), a third
marker was set to distinguish background activity from
the onset of swallowing preparation (M0). The examiner
who set the markers to the datasets was blinded to the two
tasks. For further analysis time intervals were defined as
following:

(1) Movement stage: -0.4 to 0.6 s in reference to M1

(2) Resting stage: 0 to 1 s in reference to M2

(3) Background stage 1: -2 to -1 s in reference to M0

(4) Background stage 2: -1 to 0 s in reference to M0

About five percent of the trials were rejected due to over-
lap between (1) and (2) or between (4) and (2) of the sub-
sequent swallow. The time intervals of (3) and (4) were
used to estimate the maximum null distribution. To
define the active frequency bands and to examine the tem-
poral sequencing of activation time-frequency plots were

calculated using wavelet analysis. These calculations were
done using EMEGS (ElectroMagnetic-EncephaloGraphy
Software; http://www.emegs.org/), a tool for analyzing
neuroscientific data developed in MATLAB [45]. The 275
channels of the MEG system were fragmented into 10
channel groups, frontal, central, parietal, temporal and
occipital channels in each hemisphere. Data from each
individual subject was averaged across trials (-2 to 2 s in
reference to M1) and time-frequency analysis was per-
formed (0 – 150 Hz). The time-frequency plots of the
parietal channels were determined for both hemispheres
and averaged across all subjects in each group. Afterwards
the two time intervals "execution" (1) and "predeglution"
(5) were defined for further calculations. These intervals
were chosen because they are both in reference to M1.
Therefore a direct comparison is possible without further
calculations. Comparisons between the two time inter-
vals, the two hemispheres, and the two groups were per-
formed using two-way ANOVA followed by post-hoc t-
tests.

EMG recording and resulting time phasesFigure 4
EMG recording and resulting time phases. Definition of active, resting and background stages of swallowing-related mus-
cle activity. The EMG recording of one swallowing act is shown (surface electrodes, recording from the submental muscles). 
To distinguish the swallowing execution phase, each individual's EMG signal was used to mark the swallowing related muscle 
activation. After an initial increase of more than 50% of EMG activity, the beginning of main muscle activation (M1; 100% 
increase of activation) and the end of swallowing specific muscle activation (M2; 50% decrease of activation) were marked. To 
estimate the maximal null distribution a third marker (M0) at the beginning of preparation activity was set and two background 
phases were defined (see methods section).
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According to the changes of the time-frequency analysis
MEG data were than filtered within two frequency bands:
alpha (8–13 Hz) and beta (13–30 Hz). From the filtered
MEG data, SAM was used to generate a 20 × 20 × 14 cm
volumetric pseudo-t images [46] with 3 mm voxel resolu-
tion for both frequency bands. A pseudo-t value cancels
the common-mode brain activity by subtracting the
source power found in a defined control stage from the
source power in the active stage. To account for uncorre-
lated sensor noise, this difference is normalized by the
mapped noise power [46]. Data from the execution stages
described above were used to analyze cortical activity dur-
ing the different time intervals. The corresponding resting
stage served as a control.

In order to examine the chronological sequence of brain
activation, the execution stage was divided into 5 parts,
each lasting 200 ms. Time intervals including the accord-
ing resting stages for the subsequent analysis were defined
as follows (see figure 5):

(1) 200 ms Execution stage 1 (E1): -0.4 to -0.2 s in refer-
ence to M1

(2) 200 ms Execution stage 2 (E2): -0.2 to 0.0 s in refer-
ence to M1

(3) 200 ms Execution stage 3 (E3): 0.0 to 0.2 s in reference
to M1

(4) 200 ms Execution stage 4 (E4): 0.2 to 0.4 s in reference
to M1

(5) 200 ms Execution stage 5 (E5): 0.4 to 0.6 s in reference
to M1

(6) 200 ms Resting stage (R): 0 to 0.2 s in reference to M2

(7) 200 ms Background active (B1): -0.2 to 0 s in reference
to M0

(8) 200 ms Background control (B2): -0.4 to -0.2 s in ref-
erence to M0

Group analysis of multiple subjects' data was performed
as previously published [47-50]. Briefly, the individual
MRIs were first transformed into a common anatomical
space using SPM2. Then the spatial normalized activation
maps were obtained by applying this transformation to
the individual SAM volumes. The significance of activated
brain regions was investigated by the permutation test
method described by Chau and co-workers (2004). The
maximal null distribution was estimated by comparing

EMG recording with division of the execution stageFigure 5
EMG recording with division of the execution stage. To analyze the cortical activation within the early and later stages 
of the execution phase, this 1 second interval is divided into 5 successive 200 ms time intervals (E1 – E5). The corresponding 
resting stage (R) and two background stages (B1 and B2) are also shortened to 200 ms (Methods).
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the two background stages (3) and (4) [50,51]. The
required similarity between the resting stage and the two
background stages in both examined groups was proven
before by a direct comparison of these 3 stages. For com-
parison of both conditions a standard permutation test
for unpaired samples was performed [51].

Hemispheric lateralization concerning the five different
time intervals of swallowing related activation was quan-
tified using a lateralization index (LI), which was calcu-
lated as (L-R)/(L+R), where L and R are the cumulative
pseudo-t activation in the sensorimotor cortex (BA 3, 1, 2
and 4, according to the Talairach atlas) of the left and right
hemisphere, respectively. A positive LI indicates left hem-
ispheric lateralization, while a negative LI indicates
stronger right hemispheric activation. A LI of about 0 rep-
resents indeterminate dominance, 1, respectively -1 are
indicating unilateral activation [26,52].
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