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Abstract

Background: Rhythmic motor patterns for locomotion in vertebrates are generated in spinal cord neural networks
known as spinal Central Pattern Generators (CPGs). A key element in pattern generation is the role of glycinergic
synaptic transmission by interneurons that cross the cord midline and inhibit contralaterally-located excitatory
neurons. The glycinergic inhibitory drive permits alternating and precisely timed motor output during locomotion
such as walking or swimming. To understand better the evolution of this system we examined the physiology of
the neural network controlling swimming in an invertebrate chordate relative of vertebrates, the ascidian larva
Ciona intestinalis.

Results: A reduced preparation of the larva consisting of nerve cord and motor ganglion generates alternating
swimming movements. Pharmacological and genetic manipulation of glycine receptors shows that they are
implicated in the control of these locomotory movements. Morphological molecular techniques and heterologous
expression experiments revealed that glycine receptors are inhibitory and are present on both motoneurones and
locomotory muscle while putative glycinergic interneurons were identified in the nerve cord by labeling with an
anti-glycine antibody.

Conclusions: In Ciona intestinalis, glycine receptors, glycinergic transmission and putative glycinergic interneurons,

ago.

have a key role in coordinating swimming movements through a simple CPG that is present in the motor
ganglion and nerve cord. Thus, the strong association between glycine receptors and vertebrate locomotory
networks may now be extended to include the phylum chordata. The results suggest that the basic network for
‘spinal-like’ locomotion is likely to have existed in the common ancestor of extant chordates some 650 M years

Background

Ascidians (urochordates) and vertebrates are close rela-
tives, and shared a common chordate ancestor around
650 million years ago [1]. For this reason, ascidians have
been studied for nearly 150 years as a means to uncover
the origin and evolution of their more complex verte-
brate relatives [2]. With the recent sequencing of the
genome of Ciona intestinalis [3], there has been an
increase in interest in ascidians as useful models to
study the evolution of chordates. In addition, anatomical
traits and gene expression patterns have predicted
‘homologies’ between the ascidian larval nervous system
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and the vertebrate central nervous systems (CNS) [4,5]
that may indicate deeper homology at the level of the
neural networks to generate similar functions. The larval
nervous system is rather simple (shown diagrammati-
cally in Figure 1A) when compared to that of verte-
brates and consists of some 80-100 neurons [6], divided
into two or three main sub-divisions; a brain vesicle
(BV) that contains a photoreceptive ocellus and a gravity
sensing otolith; a presumptive motor ganglion (MQG)
known variously as the visceral, trunk or tail ganglion;
and the nerve cord (NC). (Recently the use of ‘visceral
ganglion’ as the common term for the motor ganglion,
has been called into question [5,7], as there are no vis-
cera in the larva. The alternatives suggested are ‘trunk’
[5] or ‘tail’ ganglion [7] though here we use motor
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Figure 1 Simplified diagrams showing Ciona intestinalis larval body plan and ‘central nervous system’. (A) Larval body plan showing the
central nervous system divisions. Orange, brain vesicle (BV) containing photoreceptive ocellus and a gravity sensing otolith (black spots). Green,
presumptive motor ganglion, known variously as the visceral, trunk or tail ganglion. Pink, nerve cord (NC). The upper dotted line shown the
region of the section made when preparing ‘headless’ larvae. The lower section on the line a-b" shows the region of the cross section shown
diagrammatically in B. (B) Diagram showing the main features of the nerve cord (pink), muscle (green) at the cross-section at the line a-b'. The
blue arrow shows the angle of view in A. This diagram is used in the following figures to show the angle of view in the micrographs. Scale bar

in A, 100 pm.

ganglion (MQ) as a more appropriate term). Although
these nervous system divisions express Hox genes in a
way that suggest these structures represent the equiva-
lent of the forebrain, hindbrain and spinal cord [4,8],
another analysis suggests that there are two divisions
where the BV represents the forebrain, and the MG and
NC the spinal cord [5].

We examined the neural control of swimming in the
larva of C. intestinalis to understand if the similarities in
anatomy and gene expression patterns reflect similar
physiological mechanisms for the control of locomotion
in these two chordate subphyla (vertebrates and uro-
chordates). Although ascidians have a sessile adult form,
the tadpole-like larva swims with rapidly alternating tail
beats that superficially resemble vertebrate swimming
(Figure 2A). Intracellular recording from muscle cells
from two distantly spaced electrodes shows however
near-simultaneous activation of the muscles on one side
of the tail during swimming strokes [9]. This means that
the traveling wave that is generated is due to the

interaction of the muscle, notochord and resistive forces
with the surrounding fluid and not because of sequential
activation of segmented muscle cells as in vertebrates. In
vertebrates, alternating activity during swimming is gen-
erated in the spinal cord by the activation of both exci-
tatory glutamatergic interneurons and inhibitory
glycinergic commissural interneurons that periodically
inhibit contralaterally located motoneurons [10]. Thus,
the travelling wave during swimming is produced by
sequential activation of coupled spinal networks acting
on segmented muscle. Despite these fundamental differ-
ences, here we find that the contribution of glycinergic
inhibitory transmission is a common feature in both
vertebrate and non-vertebrate chordate locomotory
control.

Methods

Animals

Ciona intestinalis adults were collected in the bay of
Naples by the fishing service of the Stazione Zoologica
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Figure 2 Swimming patterns and pharmacological effects in the larva of the ascidian Ciona intestinalis. (A) Montage of images from high
speed video of swimming at 6 ms intervals showing alternating swimming movements and larval progression (in the last frame the final
position overlays the first position (grey). Sequence runs from left to right and top to bottom. Scale bar in frame 13, 100 pm. (B) Traces showing
strict left/right (L/R) alternation of tail movements during swimming strokes in a tethered decapitated larva in 1 mM L-glutamate. (C) Phase
relation of the autocorrelation on the left side (blue) with the cross correlation (red) between left and right sides. (D) The same larvae showing
loss of strict L/R alternation in the presence of strychnine. (E) Phase relation from the same larvae as in (C) showing a strong autocorrelation on
the left side and no positive correlation with the right side (red) in the presence of strychnine.

Lag Period (ms)

and also from Nishiura port and Issiki port in Gamagori
(Aichi, Japan). Adults were kept in the tanks of the Sta-
zione Zoologica and Okazaki Institute for Integrative
Bioscience. For physiological experiments in Naples,
gametes were collected from the gonoducts of several
animals and used for in vitro fertilization. Fertilized eggs
were then raised in incubators in filtered seawater at
17°C (under these conditions larvae hatch at around
19.5-20.5 hr). In Okazaki, developing embryos were
reared at 18°C in artificial seawater (Jamarin U artificial
seawater, Jamarin Laboratory, Japan) (larvae hatched at
around 17 hours post-fertilization; hpf). Hatched larvae
were then transferred to experimental chambers for
recording at 18-20°C. Larvae were partially immobilized
by pinning them down by the tail or head with Opuntia
glochids to Sylgard coated Petri dishes. In some cases,
the ‘head’ was transected between the motor ganglion
(MQG) and brain vesicle (BV) leaving only the MG and
tail intact (Figure 1A). Otherwise, after pinning down
the head, the tunic was removed from the tail with fine
forceps. This procedure allowed better penetration of
the drugs.

Motion analysis

Larval movements were recorded either with a high
speed video (FAST-CAM Rabbit mini 2, PHOTORON,
Tokyo, Japan) at 400-500 fps or were monitored in real

time using a novel dual emission detection unit consist-
ing of two photomultipliers (PMTs, Cairn Research Ltd,
Faversham, Kent, UK) adapted to enable the simulta-
neous measurement of density from two regions of the
field of view. In brief, this involved producing two sepa-
rate images by passing the emitted light through a
broad- band 50% split dichroic mirror. 50 % of the light
was sent to photomultiplier one and the rest of the light
filtered through a 600 nm band pass dichroic mirror
that passed all light under 600 nm to photomultiplier
two. >600 nm red light was passed to a video camera
(Sony CCD CC-7) that had been modified to be sensi-
tive to red light (IR filter was removed). The rectangular
apertures of two variable shutters positioned in each of
the two light paths leading to the PMTs, were visualized
on the image produced by the video camera by back-
lighting each shutter aperture with light produced by
two red (635 nm) light emitting diodes. The ‘regions of
interest’ formed by the shutter apertures were the points
of maximum left and right excursion of the tail or head
of the tethered larva. The experiment was setup by
manually selecting the two areas of interest. The outputs
of the two photomultipliers, which were set to a moder-
ate gain, were digitized as described below.

For video analysis, captured images were recorded on
videotape, digitized through a Digital Handycam (Sony,
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Japan) or an A/D convertible video board mounted on a
PC. Two ‘regions of interest’ were selected either from
the video or with the dual photomultiplier system from
the screen, and the density changes measured to detect
alternate movements of the larval tail. Frames were ana-
lyzed using software (NIH Image, ver. 1.6), and photo-
multiplier records were digitized and stored using a
Digidata 1200 data acquisition system and finally ana-
lyzed using Clampfit software (ver. 9.0) (both from
Molecular Devices, formerly Axon Instruments, Union
City, CA, USA). The locomotor period was calculated
by carrying out an autocorrelation analysis on the left
side of each data trace and measuring the time between
peaks (eg, Figure 2). The contralateral phase relation
was determined by dividing the time difference between
the peak of the left side autocorrelation and the left/
right cross-correlation trace by the locomotory period
(Figure 2).

Drugs and solutions

Drugs, compounds and solutions were added or con-
tinuously perfused over the preparation at a rate of 8
mL/min. Picrotoxin was purchased from Tocris but
other drugs and compounds were from Sigma unless
otherwise specified. The drugs were prediluted from
concentrated stock solutions and added directly to the
bath or to the superfusate at the final concentrations
indicated. Picrotoxin and strychnine were dissolved as
concentrated stocks (1-10 mM) in absolute ethanol.
During these experiments, penetration of drugs through
the intact tunic was very limited (100 uM strychnine or
picrotoxin having no effect). Removal of the outer tunic
or section of the head gave reliable penetration at lower
concentrations.

Immunocytochemistry

Ciona intestinalis larvae were fixed by immersion in
0.1% glutaraldehyde and 4% formaldehyde (as parafor-
maldehyde) in phosphate-buffered saline (PBS) at pH
7.0-7.4 diluted 50% in seawater. Samples (15 ml) were
microwaved at 550 W for 5 s, then washed in three
changes of 0.1 M PBS/0.25% Triton-X for 10-15 min
each. Larvae were mixed frequently to obtain uniform
permeabilization. They were then washed five times for
10 min each in 0.2% Triton-X in PBS before blocking in
1 mg/ml goat serum in 0.2% Triton-X PBS, all day or
overnight at 4°C. They were then incubated in a primary
antibody, rabbit anti-glycine polyclonal antiserum [11]
(AB139, Millipore Bioscience Research Reagents [for-
merly Chemicon], Temecula, CA, USA) in 0.2% Triton-
X PBS for 48 h at 4°C at a dilution of 1:250, followed by
six washes in 0.2% Triton-X PBS. The larvae were then
incubated in Alexafluor-594 conjugated goat anti-rabbit
secondary antibody (Invitrogen Corporation, Carlsbad,
California, USA) at a dilution of 1:200 in 0.2% Triton-X
PBS for 3 h at 4°C and washed five times in PBS.
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Finally, larvae were mounted in Vectashield beneath 00
coverglass, viewed either with x 25/0.8 or x40/1.3 Plan
Neofluar objectives and image stacks collected using a
confocal microscope (LSM510, Zeiss). Images from the
LSM510 software were prepared in Adobe Photoshop.
Molecular Biology

For isolation of the full-length ¢cDNA of the glycine
receptor (Ci-GlyR) candidate from C. intestinalis, we
utilized the dataset from a collection of ion channel
sequences [12] and online databases for the genome
sequence (Joint Genome Institute, C. intestinalis ver. 1,
http://genome.jgi-psf.org/cionad/cionad.home.html, and
ver. 2, http://genome.jgi-psf.org/Cioin2/Cioin2.home.
html). We predicted the single cognate (ver. 1 gene
model “ci0100137620"; ver. 2 gene model
“gwl1.106.72.1”) by online homology search and obtained
the full-length cDNA for that by performing 5" and 3’
rapid amplification of cDNA ends (RACE) using a kit
(GeneRacer, Invitrogen) and primers; outer reverse for
5-RACE: GATGGATGAAGAGCAACCGCATCT, inner
reverse for 5-RACE: GAACCCAGTGAACGC-
CATGCGTT, outer forward for 3’-RACE: ACACA-
CACCGAATCCACTGAGGAA, inner forward for 3’-
RACE: GGTATGACCAAAGGATACGACCTCAT.
Template cDNA was prepared from a total RNA pool
from hundreds of hatched larvae (at about 18 hpf,
18°C). We cloned and sequenced multiple fragments for
both ends and compared the results with that predicted
from the genomic databases. We did not find any splice
variants in those RACE fragments. The fragment pair
with an identified open reading frame was combined via
constructive PCR, and the obtained full-length cDNA
was cloned into pCR4-TOPO (Invitrogen). The whole
c¢DNA sequence of Ci-GlyR was confirmed by reading
both strands.

The 2.5 kb upstream sequence from the predicted first
Met of Ci-GIlyR gene was isolated by genomic PCR
using a pair of primers; GlyR-up-2500 (Sall):
GGCGGAGCTCTGCGTCGACGCAAGGCACATTA,
GlyR-up-0 (BamHI): GGTGGATCCATCTTTAGAA-
GATATTGAATAAATGA. The isolated fragment was
digested by Sall and BamHI and cloned into Sall-
BamH] site of a expression vector, pEGFPACMYV,
derived from pEGFP-N1 (Clontech) with a deletion of
the original CMV promoter (Asel-Nhel) (a gift from S.
Yamada and H. Takahashi at the National Institute of
Basic Biology, Okazaki, Japan). This Pc, 6;,rEGFP con-
struct (10 pug/ml circular plasmid form dissolved in 200
mM KCIl) was manually injected into C. intestinalis fer-
tilized eggs as described previously [13].

Whole-mount in situ hybridization

The coding sequence and the full-length of cDNA were
linearized, and the sense and antisense probes were pre-
pared using digoxigenin-labeling mix (Roche) and T3/
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T7 RNA polymerase by standard methods. The synthe-
sized RNA probes were fragmented to ~300 bp. Whole-
mount in situ hybridization was performed according to
the protocol described previously [14] with minor modi-
fications. The embryos or larvae at several stages were
fixed with 4% paraformaldehyde in 0.5 M NaCl and 0.1
M MOPS (pH 7.5) overnight at 4°C. The specimens
were stored at -20°C in 80% ethanol. They were rehy-
drated in PBST (phosphate-buffered saline containing
0.1% Tween-20) and partially digested with Proteinase K
in PBST (3 ug/ml for embryos; 6 pg/ml for larvae) for
40 min at 37°C. After washes with PBST, the specimens
were postfixed with 4% paraformaldehyde in PBST for 1
hr at room temperature (pH 7.5). After thorough washes
with PBST, they were pre-hybridized with hybridization
buffer, containing 50% formamide, 5x SSC, 5x Denhart’s
Soln, 0.1 mg/ml (for embryos) or 1 mg/ml (for larvae)
yeast tRNA, and 0.1% Tween-20 for more than 2 hr at
50°C. Then, they were soaked in hybridization buffer
containing probes (0.1-0.3 pg/ml for embryos, 0.01-0.05
pg/ml for larvae) for two days at 50°C. The hybridized
embryos/larvae were thoroughly washed with 2x SSC,
50% formamide, 0.1% Tween-20 at 50°C for 30 min, and
then the excess probes were digested with RNase A (20
pg/ml in a reaction solution containing 0.5 M NaCl, 10
mM Tris-Cl (pH 8.0), 5 mM EDTA, 0.1% Tween-20) for
30 min at 37°C. After further washes once with 2x SSC,
50% formamide, 0.1% Tween-20 at 50°C for 20 min,
twice with 0.5x SSC, 50% formamide, 0.1% Tween-20 at
50°C for 30 min, the samples were soaked in blocking
solution (0.5% (w/v) blocking reagent [Roche] in PBST),
and then in the 1/2000 alkaline phosphatase (AP)-conju-
gated anti-digoxigenin (anti-DIG) antibody (Fab frag-
ment, Roche) in the blocking solution (1 day at 4°C).
After extensive washes of non-reacted antibodies with
PBST, the signal was detected with standard NBT/BCIP
staining for AP. After a few washes with PBST, the
stained specimens were observed under the light micro-
scope. No evident signal was found with the sense
probe for Ci-GIyR (not shown); no difference was found
between the antisense probes from the coding sequence
only and from the full-length of Ci-GlyR cDNA.

For double labeling, the Ci-ChAT gene was used as
reference, whose coding sequence was amplified by PCR
using primers (ChAT-codeF: CATGCCTGGTGCACTA-
CATCAGAA, ChAT-codeR: CGGATATTTAA-
GAAATGGTGATATTGT) from the larval cDNA, and
subcloned into pCR4-TOPO. Fluorescein-labeled (Fluo-
labeled) antisense probe was prepared from the cloned
Ci-ChAT (Roche), and it was hybridized together with
DIG-labeled Ci-GIyR probe at the same time. After
blocking as in the procedure above, 1:2000 anti-DIG-AP
and 1:2000 anti-Fluo-POD, or in some cases the same
concentrations of anti-DIG-POD and anti-Fluo-AP (all

Page 5 of 12

Fab fragments from Roche), antibodies in blocking solu-
tion were treated at 4°C overnight. After thorough
washes with PBST (1 hr, more than 4 times, RT), and
two times more with PBS, the tyramide signal amplifica-
tion (TSA) reaction was carried out (Invitrogen; HRP-
goat anti-mouse IgG and Alexafluor-647 tyramides) for
1 hr at 4°C and then 4 hr at RT. After several washes
with PBST and then with a buffer containing 0.1 M
Tris-HCI (pH 8.0), 0.1 M NaCl, 10 mM MgCl,, coloring
reaction were performed on AP labels by Fast-Red and
HNPP (Roche) for 1.5-4 hr at RT. The specimens were
washed with PBST and post-fixed with 4% paraformal-
dehyde in PBST for 1 hr at RT. The nuclei were visua-
lized with 1 uM SYTOX Green in PBST for more than
20 min at RT. The double- or triple-stained specimens
were observed in PBS under the confocal microscopy
through appropriate filter sets for green (optional), red
and infrared light detection. The images were shown
with pseudo-colors and processed in Adobe Photoshop.
Electrophysiology on Xenopus oocytes

The coding sequence of Ci-GlyR was amplified from the
full-length ¢cDNA inserts via PCR using primers; Ci-
GlyR_forward (Sall): GATCTGTCGACCGCCACCATG-
CAGTCGCAGTATAATG, Ci-GlyR_reverse (Notl):
CTAGAGTCGCGGCCGCTTTAAACAGACAACACA-
TAACC. The amplified fragments were subcloned into
Xhol-Notl site of pSD64-TF (kindly provided by Dr. T.
Snutch, Univ. of British Columbia). After confirmation
of the sequence and linearization with Xbal, cRNA was
synthesized using the procedures provided by a com-
mercially manufactured kit (mMessage mMachine SP6,
Ambion). Xenopus laevis oocytes were prepared as
described [15], and experiments were performed accord-
ing to the guidelines of the Animal Care Committee of
the National Institute for Physiological Sciences, Oka-
zaki, Japan. Frogs were anaesthetized by immersion in
water containing 0.15% tricaine. Isolated oocytes were
defolliculated with collagenase (1 mg/ml, S-1, Nitta
Gelatin), and 50 nl of 0.02-0.05 pg/ml cRNA solution
was injected. After incubation at 18°C for 2-5 days in
ND96++ solution (96 NaCl, 2 KCI, 2 CaCl,, 1.8 MgCl,,
5 Hepes (pH 7.5), 550 pg/ml sodium pyruvate, 100 pg/
ml gentamicin; unit = mM if abbreviated), oocytes were
placed in a chamber of approximately 150 pl volume.
Macroscopic glycine-induced currents were recorded
under two-electrode voltage clamp using a ‘bath-clamp’
amplifier (OC-725C-HV, Warner Instruments). Data
acquisition and analysis were done on a Macintosh com-
puter using an ITC-16 AD/DA converter and Pulse soft-
ware (HEKA Electronik). Intracellular microelectrodes
were filled with 3 M KCl with resistances between 0.2-
0.7 MQ in the standard bath solution, ND96 (96 NaCl,
2 KCl, 2 CaCl,, 1.8 MgCl,, 5 Hepes [pH 7.5]). Oocytes
were clamped at -50 mV, and ~2.5 pl of agonist solution
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was added directly to the bath. The agonists were some-
times removed by perfusion of the external solutions.
To determine the ion selectivity from the shift of rever-
sal potential, different bath solutions and a ramp pulse
protocol were used. The digitized traces were analyzed
offline using Pulse/Pulsefit (HEKA), Igor Pro (Wavema-
trix), and Excel (Microsoft).

Morpholino injection

To suppress the expression of Ci-GlyR, we utilized a
morpholino-oligo (MO) designed against the Ci-GIyR
(GeneTools). The sequence of antisense(+) MO was
GCAGACATTATACTGCGACTGCATC, while that of
the control MO with 5 nucleotide-mismatches(-) was
GCACACATTATAgTcCGAgTGgATC. The MO was
injected manually into intact fertilized eggs without
dechorionation as above in the section Molecular Biol-
ogy (ref. [13]), at concentrations of 0.5-0.6 mM in 200
mM KCL

Molecular phylogeny

To determine the phylogenetic position of Ci-GlyR, the
predicted polypeptide sequence was aligned to the
known GIyR subunits from other organisms by Clus-
talW. After excluding gaps from the alignment, phyloge-
netic relationships were examined by neighbor-joining
methods using MEGA4 [16].

Accession numbers

The sequence of Ci-GlyR was deposited in DDBJ/EMBL/
GenBank under accession no: AB437088.

Statistics

Statistical significance was tested where appropriate
using Student’s paired or unpaired tests.

Results

Physiology and pharmacology of swimming

Ciona larvae swim with alternating beats of the tail (Fig-
ure 2A, B, Additional file 1). To analyze this tightly
alternating activity, movements of the tail were mea-
sured photometrically and the results subjected to auto-
and cross-correlation analysis. Intact tethered larvae
swam with a frequency of activity on the left side of
12.24 + 1.0 Hz (n = 5) and with a left-right phase of
0.54 £ 0.01. To determine the role of the MG in pattern
generation, we microdissected away the ‘head’ region of
living larvae containing otolith and ocellus, leaving only
the MG and tail intact. Such ‘headless’ larvae were
immobile (Additional File 1). Addition of L-glutamate
(100 pM) induced ‘swimming’ that consisted of highly
precise alternating tail movements with an identical left-
right phase to that seen in intact larvae (0.54 + 0.02
[mean + SEM], n = 5; Additional File 1) though at a sig-
nificantly higher frequency 24.4 + 1.0 Hz (P < .001 Stu-
dent’s paired t- test). When 10 pM L-glutamate
was used the frequency of tail activity on one side was
11.68 + 1.3 Hz with a left-right phase of 0.54 + 0.006
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(n = 5), not significantly different from the swimming
rate of intact larvae.

To establish if inhibitory synaptic transmission is
involved in the production of appropriate swimming
patterns, we examined the effects of blocking glycinergic
or GABAergic transmission by adding strychnine or
picrotoxin to skinned or microdissected larvae (where
swimming had previously been activated with 10 pM L-
glutamate). There was a loss of strict alternation of L/R
swimming in the presence of strychnine (Figure 2B, C,
D, E; 24/30 larvae). As can be seen in the figures, a reg-
ular pattern of activity is generated on each side that
may switch occasionally from one side to the other, but
the strict sequence of alternation (L/R/L/R/L/R) seen in
control larvae breaks down (e.g. L/L/L/R/R/R) (Figure 2
compare 2B and 2C). A more detailed analysis was car-
ried out with the photomultipler system on six larvae
and the results subjected to cross-correlation analysis
(examples are shown in Figure 2C, D). The frequency of
activity on the left side was 12.5 + 1.2 Hz (not signifi-
cantly different from the control), and a reliable measure
of the left-right phase was not possible, as there was no
cross-correlated right phase peak (n = 6). As previously
reported [17], picrotoxin (Additional File 2B; 20/25 lar-
vae) extended the swimming period and increased the
frequency of activity on one side. We subjected five lar-
vae to photometric analysis and the results (Additional
File 2C, D) show an increase in frequency to 14 + 1.5
Hz, and no disruption of the left-right phase (0.53 +
0.005, n = 5).

Location of putative glycinergic interneurons

To locate possible glycinergic interneurons, we carried
out immunocytochemistry using an anti-glycine anti-
body. A strong positive signal was found in two to four
paired cells located in the nerve cord in a region poster-
ior to the MG (Figure 3, and Additional File 3, represen-
tative of 20 larvae). Axons and apparent nerve terminals
from these cells ran in a posterior direction for around
200 um. Double staining with the nuclear dye CY-green,
revealed denser parts of these positively staining ele-
ments to be ‘cell bodies’ and thus indicated that the
more distal parts may be synapse-like terminals on or
near the motoneuron axons and the upper two of the
three rows of muscle cells on each side. The dimensions
of the somata of these cells were around 4-5 pm fitting
well in the lower range given for the dimensions of
Ciona neurones of 5-10 pm [18], and unlike the moto-
neurones (to be described later), processes were not
seen to leave the nerve cord.

Glycine receptor

The post-synaptic targets of the putative glycinergic neu-
rons were located by cloning the single copy glycine recep-
tor predicted from the genome sequence (termed Ci-GlyR
Additional File 4, and reference [12]). Probes designed for
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Figure 3 Glycine immunocytochemistry at the junction of the ‘tail’ and ‘head’ region of Ciona larvae. (4) Fluorescent image of the
junction of tail and ‘head’ showing the location of glycine positive elements (red). Note the two clearly discernable glycine-positive cells (small
arrows) in the nerve cord. (B) Brightfield image of the same area. (C) Fluorescent image of a similar area as in A showing dual staining of glycine
positive material (red) and nuclei (green). In this case, at least four glycine positive elements may be identified as being cellular (yellow co-label).
Large arrows indicate the junction between the 'head’ and tail of the larva. Scale bars = 10 um.

in situ hybridization, and antisense incubation for the gly-
cine receptor revealed a pattern of expression in the region
of the tail and the MG (Figure 4A, B, C, D,-E, black open
and red closed arrowheads, respectively). At least 100 lar-
vae were used for each observation, the figures are repre-
sentative examples of these patterns. The signals in the tail
correspond to the anterior population of developing mus-
cle cells. Co-incubation of the Ci-G/yR probe and a choline
acetyltransferase probe (ChAT), revealed co-labeling of
cells in the MG (Figure 4F, G), thus positively identifying
the Ci-GlyR positive cells as motoneurons with their cell
bodies located in the MG. To establish better the identity
and form of the labeled cells, we cloned a promoter ele-
ment of 2.5 kb upstream of the Ci-GIlyR gene that we
coupled to a GFP reporter gene. Fertilized eggs were
injected with the promoter construct and 18 hours later,
fully developed larvae revealed strong GFP labeling of
motoneurons in the MG and the muscle cells (Figure 5A,
B, C), indicating that both cell types express glycine
receptors.

The ligand specificity of Ci-GlyR, was examined by
expressing the full length sequence in Xenopus oocytes.
The receptor is selectively gated by glycine over GABA
(Additional File 5A, B). Substitution of ion species in
extracellular solutions (Additional File 5C, D) revealed
that the reversal potential is sensitive to alterations in
chloride concentration, showing that Ci-GIyR is per-
meant to chloride and likely to be inhibitory.

Suppression of Ci-GlyR expression

To determine the involvement of the Ci-GlyR in the
alternation of tail beats during swimming activity, anti-
sense (+) and 5 base-mismatched (-) morpholino oligo-
nucleotides (MO) were designed and injected into
fertilized eggs, and the resulting larvae were assessed
phenotypically. 10/10 +MO larvae were unable to swim
progressively, and produced series of unilateral tail flicks
instead of strict left right alternation (as in the case of
the strychnine treated larvae above), and had an other-
wise normal phenotype (Figure 6A, Additional File 6).
11/11 -MO larvae swam normally producing alternating
tail beats (Figure 6B, Additional File 6). When compared
by video analysis there was no significant difference in
the left-side swimming frequency between +MO and
-MO larvae (13.66 + 0.01 [n = 10], and 14.20 + 0.02 Hz
[n = 10], respectively). However, there was no organized
‘right/left’ regular alternation.

Phylogeny of Ci-GlyR

The phylogeny of Ci-GlyR was examined by comparing
available cognate sequences. The protein alignments
(Additional File 4) and a phylogenetic tree (Figure 6C)
show that Ci-GlyR clusters with vertebrate o-glycine
receptors. Although distantly related sequences exist in
the sea urchin genome, in non-deuterostome inverte-
brates no evidence for glycine receptor-like genes was
found, and the nearest ‘hits’ were other ligand-gated ion
channel members of the Cys-loop protein superfamily
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Figure 4 Expression pattern of Ci-GlyR. (A-E) Whole-mount in situ hybridization of the Ci-GlyR antisense probe during larval development. The
signal in the nervous system is marked with red arrowheads, and that in muscle cells is with open black arrowheads. eTB, early tailbud stage;
mTB, mid-tailbud stage; ITB, late tailbud stage; hL, hatched larva stage. Scale bar on £ = 100 um for A-E. (F-G). Pseudo-color images of
fluorescently detected Ci-GlyR and Ci-ChAT expression. (F) In early tailbud (eTB), Ci-GlyR (green, yellow arrowheads) and Ci-ChAT (magenta)
expression can be detected in the cytoplasm of single neuronal cells (determined by labeling the cell nuclei (blue) with SYTOX Green), although
it should be noted that the expression patterns do not overlap until the mid-tailbud stage (though nuclear staining show that the signals are in
the same cell). Scale bar = 10 um. Beside the scale bar, the location of the depicted region is outlined with an orange rectangle. (G) Ci-GlyR and
Ci-ChAT transcripts are co-localized at the mid tailbud stage (mTB). The dashed line indicates the midline of the nerve cord. Scale bar = 10 ym.

Figure 5 (A-C) Expression of enhanced GFP under the control of a 2.5 kb 5’-flanking sequence of the Ci-GlyR gene containing a
putative Ci-GlyR promoter. (A) A brightfield image partially merged with the GFP expression pattern (red rectangle that corresponds with the
view in Q). (G D) The two image planes on right (C) and left (D) muscle bands from a typical sample that shows GFP expression in muscle cells
and motoneurons (large yellow arrows). Some nerve terminals are branched (red asterisks), while others have long axons that enter the tail
nerve cord (small yellow arrowheads not resolvable easily in /). Ciona muscle bands are composed of three rows of cells, dorsal (D), middle (M),
and ventral (V), and are numbered from anterior to posterior. Muscle cells with the highest expression in this specimen are underlined. The
background signal in the tunic cells on the surface of the larva is due to autofluorescence that is also present in the controls. Scale

bar = 100 um.
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A Morpholino

B Mismatch morpholino

02s

Cc

Hs GlyR a1 NP_000162
Zf GlyR az1 CAA06711
Hs GlyR a3 AAC39919
86Zf GlyR aZ3 CAC38837
Hs GlyR a2 AAH32864
Hs GlyR a4 NP_001019623
Zf GlyR aZ2 CAC16687

Hs GlyR b NP_000815
100 Zf GlyR bZ CAC16688
Sp Glrada-like XP_001181946
Sp GlyR-like XP_782093
Dm histamine-gated Cl AAL74414

99

99

Dm GluCl CAAQ05260
100 Ce GIuCl a2B CAA04170
Hs GABAaR a1 NP_000797

Hs GABACR rho1 AAI30345

Figure 6 Function and evolution of Ci-GlyR. (4, B) Effect of gene suppression on larval swimming by morpholino injection into developing
eggs. (A) Antisense morpholino disrupts alternating swimming in a similar manner to strychnine. (B) 5-base mismatched control morpholino is
without effect on swimming, larvae are capable of normal alternating swimming (Supp. Video 2). (C) The phylogeny of Ci-GlyR compared to
other members of the Cys-loop superfamily of ligand gated chloride channels (Ci-GlyR is indicated in the box). Hs: H. sapiens, Zf: D. rerio
(zebrafish), Ci: C intestinalis, Ce: C. elegans, Dm: D. melanogaster, Sp: S. purpuratus (sea urchin).

—
0.1

(inhibitory glutamate- and histamine-gated chloride
channels).

Discussion

Physiology, pharmacology and phylogeny of locomotion
One of the main roles of the nervous system in the asci-
dian larva is to generate swimming movements that are
manifested in alternating tail beats that occur between
10-40 Hz. The motor ganglion (MG) contains around
10 cholinergic motoneurons (4-5 on each side of the
midline; [6,18]), and is believed to represent the main
motor area controlling swimming. Our microdissection
experiments confirm the role of the MG in controlling
and generating motor patterns, as ‘headless’ larvae lack-
ing both otolith and ocellus, but with tail and MG
intact, are capable of coordinated swimming movements
when L-glutamate is added to the bath. This is reminis-
cent of the situation in vertebrates where excitatory
amino acids are known to induce fictive swimming in
isolated vertebrate spinal cords [19]. Thus, a minimal
CPG exists in the MG/NC complex.

Our investigations suggest that inhibitory glycinergic
transmission is involved in the production of appropri-
ate swimming patterns by providing inhibition of the
excitatory activity across the midline, but this function
is not necessary for the generation of regular activity on
each side. This is based on the findings that strychnine
and MO suppression of the glycine receptor do not

block pattern generation on either side but disrupted
alternation between sides. This is similar to the situa-
tion in vertebrates where the effects of block by strych-
nine could be best explained by a model consisting of
elements that are able to convert tonic drive into regu-
lar activity with negative coupling across the midline
and an additional weak excitatory coupling between
both sides [20]. Our results show that rhythmic activity
is maintained in the presence of strychnine suggesting
that as in vertebrates the tonic drive to the network
(glutamate) creates rhythms in the network and that
this rhythmic activity is not generated per se by cou-
pling between the two sides. It is more difficult to
determine if also excitatory cross coupling is present
but this seems unlikely as un-coordinated ‘writhing’
movements were not seen. Finally, we confirm that
GABAergic transmission has a modulatory role in con-
trolling swimming rate and duration but has no role in
coupling the activity of muscle on either side of the
nerve cord [17].

Here we have compared the nature of the ascidian
network with the lamprey system because of this ani-
mals phylogenetic proximity to lower chordates. It is
worth underlining however that some major similari-
ties extend to other simple vertebrate systems such as
the frog tadpole. In hatchling frog tadpoles, single
motoneurons on either side of the nerve cord produce
single spikes (a single action potential per cycle) to
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drive swimming. At this stage, the cells are not inher-
ently rhythmic though a strictly alternating pattern
may be produced by the network. Later in develop-
ment, the systems matures, neurons develop rhythmi-
city, and the pattern becomes more complex and
flexible [21]. As it is shown here that despite block by
strychnine or knockdown by morpholino, activity con-
tinues rhythmically on each side, it would seem that
the Ciona tadpole resembles most closely the mature
frog tadpole, which is surprising considering the sim-
plicity of the larval system.

Despite the above similarities, there are also significant
(perhaps unique) differences in the ascidian system that
are worth pointing out. The finding that the proximal
larval muscle cells express glycine receptors was unex-
pected and indicates that muscle fibers are a more clo-
sely integrated part of the network than in vertebrate
systems. Indeed, the precise role that these muscle cells
play in swimming coordination has yet to be established.
It is known that are differences during development in
the biophysical properties of muscle cells in pre-hatch-
ing and swimming larvae suggesting a period where
movements may be driven by myogenic activity [22]. In
other invertebrate models such as Drosophila, the neural
control of larval crawling has been shown to occur in
development after a period of purely myogenic move-
ment [23]. The exact contribution and timing of myo-
genic vs. neutrally driven patterns and their integration
has yet to be established in the hatching larva of Ciona
and could be a promising avenue for future study.
Location of putative glycinergic interneurons
Our results suggest that at least a population of 2-4 cells
recently-identified as ‘caudal neurons’ or caudal moto-
neurons’ [18,24] that are present in the nerve cord and
that lie within the Hox5 positive ‘spinal’ zone [8] may be
glycinergic interneurons. This observation has been
recently reinforced by the finding that these same caudal
neurons express GABA/glycine transporters (VGAT)
[24]. It remains to be seen if these cells are a single
class of GABA/glycine interneuron or if indeed two
separate classes of neurons (GABA and glycine) exist.
We would tend to favor the latter hypothesis as the
actions of the two neurotransmitters are so different
(this paper and [17]. Interestingly, previous studies
[24,25] also reported a variation in the number of
labeled cells and we also noted a variation in cell num-
bers between animals. As our experiments were carried
out on 3-4 hour hatched larvae, this is unlikely to repre-
sent different developmental stages and is likely to be a
real (though surprising), animal to animal variation.
Future studies should resolve this issue and appropriate
molecular markers need to be developed to identify
these cells. It is noteworthy that the cell bodies and
their processes appear to be confined entirely to the
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nerve cord, unlike the motoneurons which extend pro-
cesses along the cord, but also form terminals outside
the nerve cord on the muscle cells.

Glycine receptor function

Molecular markers for the Ciona single copy glycine
receptor (Ci-GlyR) allowed the potential targets of glyci-
nergic inhibition to be identified. In situy hybridization
revealed a pattern of expression in the anterior tail mus-
cle and MG neurons. The neural elements were identi-
fied as cholinergic motoneurones by double in situ
hybridization with a choline acetyltransferase probe
(ChAT). In addition, the 2.5 kb sequence upstream of
the Ci-GIyR gene, presumably containing the promoter
for Ci-GlyR, revealed strong GFP labeling of motoneur-
ons in the MG and muscle cells confirming that both
cell types express glycine receptors. We interpret these
data as indicating that glycine may have a dual role in
inhibiting both motoneurons and muscle cells. Further
investigation (for example direct electrophysiological
recording from the anterior rows of muscle), should
help to resolve the issue.

Not surprisingly our results from the expression of the
full length sequence in Xenopus oocytes showed a very
high selectivity for glycine over GABA with a reversal
potential sensitive to alterations in chloride concentra-
tion. The results indicate that Ci-GlyR is permeant to
chloride in a similar way as vertebrate glycine receptors
are [26]. The selectivity for glycine over GABA could
lead one to speculate that this could be necessary
because GABA is active in the system and the short
cross-cord distances and the lack of glial sheathing in
this system would result in synaptic ‘spill over’.
Phylogeny of Ci-GlyR
The above results also point to the particular features of
the phylogeny of Ci-GlyR that we examined by compar-
ing available cognate sequences. The protein alignments
and phylogenetic tree show that Ci-GlyR clusters with
vertebrate o-glycine receptors. No closely related
sequences were found in sea urchin and there were only
distant ‘hits’ with other ligand-gated ion channel mem-
bers of the Cys-loop protein superfamily (inhibitory glu-
tamate- and histamine-gated chloride channels) in other
invertebrates. Until full-sequencing and heterologous
expression analysis of sea urchin sequences are carried
out, one may conclude tentatively that glycine receptors
are likely to be a chordate innovation from an ancestral
bilaterian Cys-loop protein, and that they are specifically
associated with chordate locomotory networks.

Conclusions

While the details of the connectivity of motoneurons,
muscle and caudal neurons remain to be worked out,
these results provide additional evidence to support
basal similarities of function between the ascidian



Nishino et al. BMC Neuroscience 2010, 11:6
http://www.biomedcentral.com/1471-2202/11/6

MG/NC complex and the vertebrate spinal cord. Thus,
it is likely that the role of glycine inhibitory synaptic
transmission in controlling coupling of left-right alterna-
tion in vertebrate spinal CPGs and ascidians may be
traced back to their last common ancestor. The elabo-
rate and cellularly numerous vertebrate network is mini-
mally represented in this ascidian larva by a dramatically
reduced number of cells, and not more than 10 moto-
and 2-4 inhibitory interneurons that are located in the
MC and NC, respectively. These results, along with
other homologies between vertebrate and invertebrate
chordates, indicate that these animals represent highly
relevant models, not only to determine developmental
mechanisms, but also to understand the evolution and
physiology of the chordate nervous system.

Additional file 1: High speed video clip showing free-swimming,
and tethered larval swimming. Tethered larvae are immobile after
microdissection of the foremost part of the ‘head’, the area containing
the motor ganglion remains. Addition of 100 uM glutamate induces
regular alternating swimming.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2202-11-6-
STWMV]

Additional file 2: Effect of picrotoxin on swimming in tethered
larvae. (A) Control showing strict left/right (L/R) alternation of tail
movements during swimming strokes. (B) Phase relation of the
autocorrelation on the left side (blue) with the cross correlation (red)
between left and right sides. (C) The same larvae as C after the addition
of picrotoxin. (D) Phase relation of the autocorrelation on the left side
(blue) with the cross correlation (red) between left and right sides in the
presence of picrotoxin. Note that swimming rate and duration increased
in picrotoxin

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2202-11-6-
S2.PDF]

Additional file 3: Glycine immunocytochemistry at the junction of
the ‘tail’ and ‘head’ region of the ascidian larva. (4) test example with
primary antibody, (B) control (primary antibody omitted). Note the
glycine positive zone in the nerve cord (arrows).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2202-11-6-
S3.PDF]

Additional file 4: Alignment of Ci-GlyR primary sequence with
mammalian glycine receptors. The well-conserved Cys-loop structures
are indicated with lines. Predicted signal peptides and trans-membrane
domains are labeled by dotted underlining and shaded rectangles
respectively.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2202-11-6-
S4.PDF ]

Additional file 5: Biophysical properties of Ci-GlyR heterologously
expressed in Xenopus oocytes at a holding potential of -50 mV. (4)
Inward currents generated by application of glycine (30 uM - 3 mM,
upper panel) or GABA (10 mM, lower panel). (B) Normalized dose-
response curve of Ci-GlyR in Xenopus oocytes. The ECsq of glycine gating
of the receptor is estimated to be about 7.5x10™ M, a similar value to
that seen in vertebrate glycine receptors expressed in Xenopus oocytes
[27]. (C, D) Ci-GIyR is selectively permeant to CI'. (C) The normalized |-V
relationships of Ci-GlyR in the indicated extracellular solutions. Low CI°
(thick curve), but not low Na* and K* (gray curve), causes a significant
shift in reversal potential. (D) Effects of ion substitution on the reversal
potential of glycine evoked currents. Small circles show the reversal
potential values in replicated experiments (n > 6) and bars at right
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indicate the mean and SD. NMDG, N-methyl-d-glucamine; MetS,
methanesulphonate.

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2202-11-6-
S5.PDF]

Additional file 6: High speed video clips showing the result of Ci-
GlyR morpholino on larval swimming. After (+) Ci-GlyR morpholino
treatment, larvae are unable to swim in a coordinated way (clip shows
two larvae). The third clip shows that after treatment with (-) 5-base
mismatched Ci-GlyR morpholino, larvae swim normally.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2202-11-6-
S6.WMV ]
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