BMC Neuroscience

POSTER PRESENTATION

Open Access

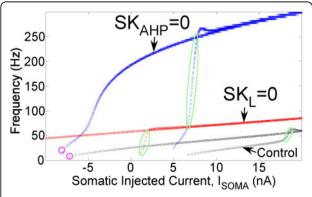
Role of low and high-voltage activated Ca2⁺-dependent K⁺ currents in the control of alpha-motoneuron discharge and its implication in hyperreflexia

Sharmila Venugopal¹, Thomas M Hamm^{1,3}, Ranu Jung^{1,2*}

From Nineteenth Annual Computational Neuroscience Meeting: CNS*2010 San Antonio, TX, USA. 24-30 July 2010

Specificity of calcium-activated potassium (K⁺) currents to different sources of calcium has been noted in many neurons (e.g. 1). Recently, in spinal alpha-motoneurons $(\alpha$ -MN), it was shown that the low-voltage activated L-type calcium currents (also known as persistent calcium currents) activate an exclusive subset of small conductance K⁺ currents (SK_L)². The SK_L currents were distinct from the medium after-hyperpolarization (mAHP) producing N/P-type calcium activated K+ currents (SK_{AHP} currents). The same study further suggested that an enhancement of persistent calcium current often observed after chronic spinalization can in part be due to reduced availability of the SK_L channels albeit mAHP remained unchanged. While mAHP has been suggested to be integral in controlling motoneuron firing frequencies and grading L-Ca activation, the role of SK_L currents in motoneuron discharge is unknown. The goal of this study is to characterize the influence of SK_{AHP} and SK_L currents on motoneuron firing frequencies. Here we test the hypothesis that SK_{AHP} and SK_L currents play differential roles in the control of persistent inward currents that are key determinants of motoneuron excitability.

Methods


The α -MN is modeled with two compartments (soma and dendrite) using conductance-based Hodgkin-Huxley formalism. The persistent L-Ca and SK_L are located in the dendrite along with persistent sodium current. The mAHP causing high-voltage activated Ca^{2+} and SK_{AHP}

potential causing fast sodium and delayed rectifier K⁺ currents. Model simulations are performed using the XPPAUT software.

currents are confined to the soma along with action

Results

The model $\alpha\textsc{-MN}$ shows counter-clockwise hysteresis in the injected current-frequency (I-f) relationship (Fig. 1, control) as observed in many chronic spinal sacrocaudal motoneurons. This hysteresis is mediated by the dendritic L-Ca and persistent sodium currents (together termed PIC). A selective blockade of somatic SK_{AHP} greatly increases the spike frequencies consistent with experimental findings that mAHP is integral for controlling $\alpha\textsc{-MN}$ frequencies. On the other hand, eliminating SK_L resulted in uncontrolled L-Ca activation with virtually no deactivation of the persistent inward currents

Figure 1 I-f curves; Bounded by green ovals are frequencies during PIC development; pink circles denote PIC termination.

¹Center for Adaptive Neural Systems, Arizona State University, Tempe, AZ-85287, USA

^{*} Correspondence: Ranu.Jung@asu.edu

even with large hyperpolarization (self-sustained discharge for $I_{\rm SOMA} \leq 0$ does not terminate; compare with $SK_{AHP} = 0$ and control traces).

Conclusions

Chronic spinal cord injury often results in spasticity (hyperreflexia). Intrinsic hyper excitability of α -MN has been attributed to underlie hyperreflexia. The uncontrolled and abrupt PIC activation due to reduction in SK_L currents implicates rapid development and sustenance of muscle contraction forces such as during spasms, thus delineating a possible mechanism for α -MN hyper excitability that could lead to hyperreflexia following injury.

Acknowledgements

This work was supported by NIH R01-NS054282.

Author details

¹Center for Adaptive Neural Systems, Arizona State University, Tempe, AZ-85287, USA. ²School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ-85287, USA. ³Barrow Neurological Institute, Phoenix, AZ-85013, USA.

Published: 20 July 2010

References

- Marrion NV, Tavalin SJ: Selective activation of Ca2⁺-activated K⁺ channels by co-localized Ca2⁺ channels in hippocampal neurons. *Nature* 1998, 395-900-905
- Li X, Bennett DJ: Apamin-sensitive calcium-activated potassium currents (SK) are activated by persistent calcium currents in rat motoneurons. J Neurophysiol 2007, 97:3314-3330.

doi:10.1186/1471-2202-11-S1-P158

Cite this article as: Venugopal *et al.*: Role of low and high-voltage activated Ca2⁺-dependent K⁺ currents in the control of alpha-motoneuron discharge and its implication in hyperreflexia. *BMC Neuroscience* 2010 11(Suppl 1):P158.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

