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Regional differences in trait-like characteristics of
the waking EEG in early adolescence
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Abstract

Background: The human waking EEG spectrum shows high heritability and stability and, despite maturational
cortical changes, high test-retest reliability in children and teens. These phenomena have also been shown to be
region specific. We examined the stability of the morphology of the wake EEG spectrum in children aged 11 to 13
years recorded over weekly intervals and assessed whether the waking EEG spectrum in children may also be trait-
like. Three minutes of eyes open and three minutes of eyes closed waking EEG was recorded in 22 healthy children
once a week for three consecutive weeks. Eyes open and closed EEG power density spectra were calculated for two
central (C3LM and C4LM) and two occipital (O1LM and O2LM) derivations. A hierarchical cluster analysis was
performed to determine whether the morphology of the waking EEG spectrum between 1 and 20 Hz is trait-like.
We also examined the stability of the alpha peak using an ANOVA.

Results: The morphology of the EEG spectrum recorded from central derivations was highly stable and unique to
an individual (correctly classified in 85% of participants), while the EEG recorded from occipital derivations, while
stable, was much less unique across individuals (correctly classified in 42% of participants). Furthermore, our analysis
revealed an increase in alpha peak height concurrent with a decline in the frequency of the alpha peak across
weeks for occipital derivations. No changes in either measure were observed in the central derivations.

Conclusions: Our results indicate that across weekly recordings, power spectra at central derivations exhibit more
“trait-like” characteristics than occipital derivations. These results may be relevant for future studies searching for
links between phenotypes, such as psychiatric diagnoses, and the underlying genes (i.e., endophenotypes) by
suggesting that such studies should make use of more anterior rather than posterior EEG derivations.
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Background
The EEG can be recorded non-invasively and inex-
pensively, with accurate estimates of cortical oscillations
made with just a few minutes of recording. EEG record-
ings are of great utility not only for learning about the
healthy brain, but also reflect changes in brain struc-
ture/function associated with psychiatric disorder. The
heritability and stability of the EEG add to its utility. For
example, studies of twins have found that the human
waking EEG is one of the most heritable traits with her-
itability estimates ranging between 0.55 and 0.9 [1,2],
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dependent mainly on frequency band [3-5] and age
[6,7]. Heritability estimates are also region specific, with
studies generally finding higher heritability over poster-
ior as compared to anterior regions [4,5,8].
In addition to being highly heritable, the waking EEG

spectrum is stable across time. A number of studies in
adults, adolescents, and children have shown high test-
retest reliability between sessions (separated in time by
several months and even up to several years) for both
absolute and relative spectra [3,9-11]. Mirroring the
heritability studies, reports on the stability of the EEG
spectrum have also shown greater stability in posterior
compared to anterior regions [12]. These studies have
made claims of stability primarily by computing correl-
ation coefficients between recordings [9-11,13,14] or by
ANOVA analysis [15] within a given frequency band.
One limitation of correlation measures is that although
d. This is an open access article distributed under the terms of the Creative
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they are an indication of the stability of band power within
an individual, they do not address how unique power in a
band is compared to that of other individuals. In contrast,
intraclass correlation coefficients (ICCs) take into account
both the within and between subject variability, with high
ICC values indicating that a feature is stable within an
individual and different from that of others. Establishing
the EEG as not only stable within an individual, but
unique from that of others is crucial for establishing useful
endophenotypes. Although stability studies have shown
regional differences, studies using ICCs measures have not
addressed regional issues beyond comparing central versus
frontal derivations in children with and without dyslexia
[16] and cerebral palsy [17], finding ICC values between
these regions are roughly equivalent. A limitation of the
previous research is that both ICC values and correlation
coefficients are computed for a single frequency bin or
band and therefore do not capture the features of the
entire EEG power density spectrum.
The aim of the current study was to examine the sta-

bility of the entire waking EEG spectrum in early ado-
lescents (ages 11 to 13 years) over weekly intervals and
examine the extent to which the waking EEG spectrum
is a biological trait in this age range. We used a cluster
analysis based on distance between the three weekly-
recorded power density spectra to assess whether the
EEG spectrum is trait-like. Compared to ICC analysis,
in cluster analysis the entire EEG spectrum is taken
into account, making it more representative of an indi-
vidual, thus enhancing its utility and validity. Unlike
ICC, cluster analysis does not rely on a priori know-
ledge of repeated measures within a given individual
and thus does not make use of intra and inter-
individual variability. Rather, in cluster analysis, spectra
are grouped according to their similarity. Furthermore,
we examined whether trait-like characteristics, as deter-
mined by the cluster analysis, vary in central and oc-
cipital EEG derivations. In order to compare our results
with previous stability studies, we also examined the
stability of the alpha peak across recordings using an
ANOVA.

Methods
A. Subjects
Twenty-two healthy right-handed early adolescents, aged
11 to 13 years (mean age 12.3 ± 0.8 years; 12 males) par-
ticipated in this study. All participants were pre/early
pubertal (n = 13) or mid-pubertal (n = 8) with the ex-
ception of one female who was late pubertal.
Participants were recruited using television and news-

paper advertisements, as well as at schools, and at a
meeting of the association for parents with gifted chil-
dren. The Zurich cantonal ethical committee (KEK) for
research on human participants approved the protocol
and the participants’ legal guardian gave written in-
formed consent. This study conforms with the Code of
Ethics of the World Medical Association (Declaration of
Helsinki), printed in the British Medical Journal (18 July
1964). Participants were compensated for their participa-
tion by cinema, book or CD vouchers and a T-shirt.
Participants were healthy, had no history of neuro-

logic and psychiatric disease, and were medication free.
For three days before each experimental session partici-
pants were asked to abstain from caffeine and medica-
tion and to adhere to a regular sleep–wake schedule
(minimum of 8 hours of night-time sleep; no daytime
naps). Wrist-worn actimeters and sleep logs verified
compliance. The data used in the current study is the
control data from another study [18].
B. Study design
Participants came to the laboratory on three different
occasions in weekly intervals, always at the same time of
the day. At each session, a baseline waking EEG was
recorded to assess the stability of waking EEG in early
adolescents over weekly intervals.
C. Electroencephalogram
EEG (derivations C3LM, C4LM, O1LM and O2LM;
LM = Linked Mastoid), electrooculogram (EOG), and
electrocardiogram (ECG) were recorded with a poly-
graphic amplifier Artisan (Micromed, Mogliano Veneto,
Italy). The analog signals were high-pass (EEG: –3 dB at
0.16 Hz; ECG: 1 Hz) and low-pass filtered (−3 dB at 67.2
Hz), sampled at 256 Hz, and recorded using Rembrandt
DataLab (Version 8.0; Embla Systems, Broomfield, CO,
USA).
Waking EEG was recorded continuously for 6 min (3 min

eyes closed, 3 min eyes open). Participants sat on a chair,
rested their head on a chin rest, and were instructed to
avoid movement. Vigilance was ensured by continuous
online visual inspection of the recordings and alerting
the subjects via intercom when signs of drowsiness were
present.
D. Data analysis
D1. Electroencephalogram
Artifacts were visually marked and artifact-free seg-
ments were subjected to spectral analysis (Hanning win-
dow of width 2 s with 50% overlap; frequency resolution
of 0.5 Hz) using MATLAB (The MathWorks Inc, Natick,
MA, USA). All participants had at least thirty 2-s epochs
of artifact free data in each condition (i.e., eyes closed and
open) which were used to calculate the power density
spectra. Frequencies between 1 and 20 Hz were analyzed.
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D2. Cluster analysis of power density spectra
Hierarchical cluster analysis based on Euclidean dis-
tance was used to examine whether the log-transformed
EEG spectra (from 1 to 20 Hz) were trait-like using
MATLAB functions PDIST and LINKAGE (average ag-
gregation strategy). Cluster analysis was performed in
several steps. First, a power spectrum was obtained for
each recording/participant and represented as a vector
consisting of power density at all frequency bins (e.g., 1
to 20 Hz with a frequency resolution of 0.5 Hz results in
a vector of 39 values). Next, the distance between all
vectors (total of 66 vectors = 22 participants multiplied
by three spectra per participant) was calculated and
vectors with small distances between them were clus-
tered together, while vectors that were far apart were
clustered separately. Finally, the distance between
vectors is represented visually as a dendrogram, which
consists of upside-down U-shape lines where the
height of the U represents the distance between the
connected objects (Figure 1). The cluster analysis was
performed separately for each derivation, and ‘eyes
open’ and ‘eyes closed’ conditions. The algorithm did
not have a priori information regarding the number of
clusters or recordings per participant; therefore clus-
tering was based solely on distance. The percentage of
correctly clustering participants was calculated for
each derivation and ‘eyes open/closed’ conditions. We
performed a χ2 test to assess whether the rate of
correct clustering was significantly different between
derivations or ‘eyes open/closed’ conditions.
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Figure 1 Dendrogram of derivation C3LM in the eyes closed conditio
participants whose waking EEG was recorded in weekly intervals for three
letter on the x-axis and Euclidean distance is shown on the y-axis. Clusters
weeks, while red depicts participants whose three recordings do not cluste
correctly, while data from 3 (subjects F, I, and C) did not cluster correctly.
D3. Stability of peak alpha frequency
To be able to compare our results with previous stud-
ies and investigate whether the characteristics of the
alpha rhythm vary across sessions and derivations, we
determined the frequency and height (measured in
μV2/Hz) of the alpha peak. The alpha peak was deter-
mined on an individual basis because significant
interindividual variability in the frequency of the alpha
peak has been shown [19]. Three participants consistently
showed more than a single peak in the alpha band (7–12
Hz). In these instances, the peak with the lower frequency
was used for the analysis. Statistical analysis was
performed with SPSS (Version 18.0; SPSS Inc, Chicago,
IL) using a repeated measure ANOVA with factor ‘week’
(one, two, or three) to assess whether the frequency and
height of the alpha peak differed across weeks. Analyses
were done separately for eyes closed and open condi-
tions since the effect of eye closure on the alpha peak
has been well established [19,20]. Mauchly’s sphericity
test was applied to all ANOVA tests and corrected using
the Greenhouse-Geisser correction. Significant differ-
ences were further explored with post-hoc t-tests.

D4. Questionnaire data
A mood questionnaire using a 100 millimeter (mm) visual
analog scale similar to Aitken [21], was administered at
each session prior to the EEG recording. The question-
naire consisted of five questions (with the anchors indi-
cated in parenthesis) regarding tiredness (0 mm = tired;
100 mm = alert), general mood (0 mm = good mood;
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n for illustrative purposes. This analysis included data from 22
weeks. In this plot, each participant is denoted with an alphabetical
highlighted in blue depict participants clustering across all three
r together. In this example, data from 19 participants clustered
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100 mm = bad mood), energy (0 mm = lethargic; 100 mm =
energetic), tension (0 mm = relaxed; 100 mm = stressed),
and concentration (0 mm = concentrated; 100 = unable to
concentrate). A repeated measures ANOVA with factor
‘week’ (one, two, or three) was used to assess whether
there was a change in these parameters across weeks. Sig-
nificant effects were further explored with post-hoc t-tests
comparing the weeks.
Results
A. Cluster analysis of power density spectra
In order to compare the morphology of the entire spectrum
we performed a hierarchical cluster analysis (see Methods).
The number of participants that clustered successfully
over all three recordings was dependent on EEG deriv-
ation (Figure 2). For the central derivations in the eyes
closed condition, 19 participants clustered for C3LM
and 20 participants clustered for C4LM. The dendro-
gram for the eyes closed condition for derivation C3LM
is shown in Figure 1. For the eyes open condition, the
rate of clustering was the same for C3LM and C4LM
(18 of 22 participants). In contrast, for O1LM and
O2LM clustering was successful in only 8 participants
in the eyes open condition. In the eyes closed condition,
clustering was successful in 13 participants for O2LM
and 8 participants for O1LM.
Figure 2 Rate of clustering in central and occipital derivations. Rate o
represents the results of the cluster analysis for a given derivation in the ey
who cluster correctly noted on top. The y-axis shows the number of partic
significant) were analyzed using a χ2 test.
Chi-squared analyses revealed that clustering was more
successful for the left central compared to the left occipital
derivation (Eyes closed: χ2(1) = 13.54, p = 0.0002; Eyes
open: χ2(1) = 9.40, p = 0.002). To demonstrate this dif-
ference, four participants whose spectra clustered in the
eyes closed condition for derivation C3LM but not
O1LM are shown in Figure 3. We did not observe a differ-
ence in clustering between right and left central (Eyes
closed: χ2(1) = 0.23, p = 0.63, Eyes open: χ2(1) = 0, p = 1) or
left and right occipital (Eyes closed: χ2(1) = 2.28, p = 0.13,
Eyes open: χ2(1) = 0, p = 1) derivations (Figure 2).

B. Peak alpha frequency and height
We examined the stability of the peak height (power
density measured in μV2/Hz) and frequency (Hz) of the
alpha peak in the waking EEG spectrum using an
ANOVA with factor ‘week’ (one, two or three). Average
power spectra are shown in Figure 4 for left central and
occipital derivations as a function of week and eyes
open/closed. We found a modest change in the fre-
quency of the alpha peak at the left occipital derivation
(O1LM) for both eyes closed (F(2,42) = 4.94; p = 0.012)
and open (F(2,42) = 5.4; p = 0.008) conditions. A decline
in frequency in the eyes closed condition between weeks
one and three (t(21) = 2.61; p = 0.016) but not between
weeks one and two (t(21) = 0.81; p = 0.427) was ob-
served. In the eyes open condition, we found a slowing
f clustering is depicted for central and occipital derivations. Each bar
es open and closed conditions with the percentage of participants
ipants who cluster correctly. Significant differences (p<0.05; n.s., non-



Figure 3 Comparison of the power spectra in participants whose recordings cluster in C3LM but not in O1LM. Power density spectra of
four representative participants are shown for derivation C3LM (left) and O1LM (right). Each participant was recorded three times resulting in
three spectra (depicted in one color) per participant. The four participants shown clustered across all the three recordings for derivation C3LM
but not for derivation O1LM. Note that power density is plotted on a logarithmic scale.
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of frequency between weeks one and two (t(21) = 2.11;
p = 0.047) and weeks one and three (t(21) = 3.46; p = 0.002).
We found no change in the frequency of the peak in
the central derivations.
With regards to peak height of the alpha peak, we found

a significant main effect of week for the occipital deriva-
tions in the eyes open condition only (O1LM: F(2,42) =
7.86; p = 0.001; O2LM: F(2,42) = 7.134, p = 0.006). Peak
height increased between weeks one and two (O1LM:
t(21) = −2.68; p = 0.014; O2LM: t(21) = −2.78; p = 0.011)
and between weeks one and three (O1LM: t(21) = −4.12;
p <0.001; O2LM: t(21) = −2.9; p = 0.009). Means and
standard deviations for peak height and frequency are
shown in Table 1 for all derivations for both eyes open
and closed conditions.
C. Mood questionnaire
A change in mental tension across weeks was observed
(mean (SD): week 1 = 30.3 (16.8); week 2 = 29.7 (24.2);
week 3 = 27.6 (21.1); F(2,42) = 4.248; p = 0.036). A post-
hoc paired t-test revealed a decline in mental tension be-
tween weeks one and three (t(21) = 2.37; p = 0.028) but
not between weeks one and two (t(21) = 1.88; p = 0.075).
No other variables showed a significant change across
weeks.
D. Impact of mood on alpha peak characteristics
We included mood as a covariate in the ANOVA analysis
in order to examine whether the change in mental tension
had an impact on the observed effects in the occipital deri-
vations. Examining the data in this way, there was no lon-
ger an effect of week for O1LM peak frequency in the eyes
closed condition and O2LM peak height in the eyes open
condition.
Discussion
The current study used two different measures to examine
the stability of the EEG spectrum in early adolescents: a
cluster analysis approach and characterization of the alpha
peak. Overall, the results showed that the waking EEG is
highly stable across recordings and unique to an individ-
ual. In addition, we were able to demonstrate that the de-
gree to which the EEG spectrum is trait-like is dependent
on the brain region.
Clustering is better in central derivations
The current study used cluster analysis to examine
whether the waking EEG in early adolescents represents a
trait. Thus, the unique contribution of our analysis is not
solely the examination of stability, but also the quantifica-
tion of interindividual variability. Another advantage of



Figure 4 Average power density spectra for derivations C3LM and O1LM. Power density spectra averaged across participants of waking EEG
were calculated for derivations C3LM (left) and O1LM (right) for three recording sessions separated by a week. Eyes open (EO) conditions are
shown with blue, red, and green lines and eyes closed (EC) are shown in cyan, black, and magenta. Note that power density is plotted on a
logarithmic scale and the scales are different for the two derivations.
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the current analysis is that clustering is based on the entire
spectrum rather than limited to the alpha band. Although
the alpha oscillation comprises an important cortical
rhythm, functional neuroanatomy is more accurately
reflected in the entire EEG spectrum.
Our analysis showed that central, and to a lesser ex-

tent, occipital derivations, are trait-like. We note that
though the percentage of clustering for occipital deriv-
ation appears low (between 36.4% and 59.1%), we would
Table 1 Descriptive data of the EEG alpha peak

Derivation Eyes closed

Week 1 Week 2 Wee

Frequency [Hz]

C3LM 9.2 (±1.2) 9.2 (±1.1) 9.2 (±

C4LM 9.2 (±1.1) 9.2 (±1.2) 9.2 (±

O1LM 9.7 (±0.7) 9.6 (±0.8) 9.5 (±

O2LM 9.6 (±0.8) 9.5 (±0.8) 9.5 (±

Height [μV2/Hz]

C3LM 35.20 (±35.95) 28.69 (±20.19) 32.25 (±

C4LM 34.39 (±34.83) 30.85 (±21.26) 30.78 (±

O1LM 140.57 (±111.26) 137.20 (±95.46) 158.81 (±

O2LM 147.27 (±128.18) 138.68 (±127.12) 165.17 (±

Mean (standard deviation) frequency (Hz) and height (μV2/Hz) of alpha peak (7 – 12
between weeks one and three in the left occipital derivation (O1LM). Peak height in
open condition.
not expect successful clustering for any participant by
chance. We do not expect that the difference between
central and occipital derivations is due to less stability
of the alpha peak in the occipital regions because our
ANOVA analysis revealed a change in alpha peak char-
acteristics in only the eyes open condition, whereas the
difference between occipital and central derivations was
present in both eyes open and closed conditions. The lack
of interindividual variability rather than low intraindividual
Eyes open

k 3 Week 1 Week 2 Week 3

1.2) 9.3 (±1.3) 9.1 (±1.1) 9.4 (±1.3)

1.2) 9.4 (±1.2) 9.1 (±1.2) 9.3 (±1.1)

0.7) 9.7 (±0.7) 9.5 (±0.7) 9.4 (±0.8)

0.7) 9.5 (±0.8) 9.5 (±0.8) 9.4 (±0.7)

19.35) 24.49 (±22.07) 20.47 (±16.01) 22.11 (±15.79)

17.47) 20.99 (±17.54) 20.78 (±14.58) 25.38 (±23.16)

127.88) 44.91 (±57.47) 63.38 (±61.77) 70.65 (±77.38)

134.02) 49.05 (±60.47) 71.57 (±86.89) 75.57 (±90.50)

Hz). Frequency of the peak declined in the eyes open and closed condition
creased in the occipital derivation (O1LM and O2LM) across weeks in the eyes
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stability may account for the lower rate of clustering in
occipital versus central derivations. For example, greater
variability across individuals was observed in the fre-
quency and shape of the waking EEG spectrum in cen-
tral compared to occipital derivations (see Figure 3).
We speculate that in functionally “lower” cortical areas
(e.g., occipital regions) variability across individuals is
limited since these regions perform the first steps in
processing of visual stimuli, which tends to occur in a
stereotypical manner [22]. On the other hand, cortical
regions that are involved in further processing of stimuli
and coordination of action (e.g., central regions) involve
many connections and may be more dependent on indi-
vidual differences in neuroanatomy [23].

Clustering in sleep versus waking
In a previous study of trait-like characteristics of the sleep
EEG in a different sample of adolescents, Tarokh et al. [24]
found that successful clustering of non-rapid eye move-
ment sleep EEG spectra recorded on consecutive nights at
derivation C3A2 was comparable to that found in the
current study. In contrast to the current study, however,
the study by Tarokh et al. found similar rates of successful
clustering in the right occipital (O2A1) and left central
(C3A2) derivations (i.e., 89% in O2A1 and 94% in C3A2).
We speculate that the difference between clustering dur-
ing waking and sleep may reveal important information
regarding the brain oscillations present during these two
states. During waking, occipital and central regions are
functionally distinct with occipital regions performing vis-
ual processing while central regions are involved in som-
atosensory information processing and execution of
action. In contrast, during sleep, the functional difference
between these areas may be less pronounced and cortical
oscillations in these regions are less idiosyncratic.

Analysis of the alpha frequency peak
The alpha frequency band is an important rhythm to
consider when examining the heritability and stability
of the waking EEG. Several studies have shown that
alpha peak power is a highly stable EEG parameter [11]
and that heritability is highest around the alpha peak
[3]. In the current study, no significant changes in alpha
peak frequency or peak height across weeks were found
in central EEG derivations. This adds further support to
previous reports showing that the alpha rhythm in
children has high test-retest reliability [12,14,16]. In
contrast, analysis of occipital derivations across weeks
showed significant changes in both the frequency and
height of the alpha peak. This finding is in contrast to
previous studies that found greater stability over more
anterior regions. Compared to previous studies the time
interval between assessments was short (one week) in
the current study. Therefore, we interpret our results in
conjunction with the mood questionnaires, which showed
a decline in mental tension across weeks. Alpha is promin-
ent over occipital regions and reflects the degree of relax-
ation – as one increases so does the other. Therefore, the
changes to alpha peak height and frequency across weeks
may reflect an adaptation of participants to the lab envir-
onment and study protocol over time. This adaptation
may not occur in studies where recordings were several
weeks or months apart. Therefore, our finding highlights
the importance of including a baseline EEG recording at
every experimental session in order to ensure accuracy of
results and avoid unnecessary inflation of Type I error.

Limitations
Several limitations of this study are important to note.
With respect to our analysis of the stability of the alpha
frequency peak, our frequency resolution was 0.5 Hz,
which limits our ability to detect more subtle changes in
frequency across recording session. Furthermore, this
analysis was restricted to four derivations, which limits
our ability to examine regional differences in further de-
tail. We examined a narrow age range and the degree to
which the regional differences we observe are specific to
this developmental stage is unknown. In fact, there are
large differences in the maturational trajectory of different
cortical regions [25]. Future studies should examine the
degree to which the EEG is trait-like using a larger num-
ber of electrodes and more participants.

Conclusions
We used a novel method to show not only that the waking
EEG spectrum is trait-like, but that the degree to which
the EEG is trait-like depends on brain region. This finding
has implications for resting state waking EEG studies in
search of biological markers of cognitive capabilities and
psychiatric disorders suggesting that such studies should
use central rather than occipital derivations.
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