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Abstract

neurodegenerative disease networks.

in many different ways.

network, Systems analysis

Background: Genetic networks control cellular functions. Aberrations in normal cellular function are caused by
mutations in genes that disrupt the fine tuning of genetic networks and cause disease or disorder. However, the
large number of signalling molecules, genes and proteins that constitute such networks, and the consequent
complexity of interactions, has restrained progress in research elucidating disease mechanisms. Hence, carrying out
a systematic analysis of how diseases alter the character of these networks is important. We illustrate this through
our work on neurodegenerative disease networks. We created a database, NeuroDNet, which brings together
relevant information about signalling molecules, genes and proteins, and their interactions, for constructing

Description: NeuroDNet is a database with interactive tools that enables the creation of interaction networks for
twelve neurodegenerative diseases under one portal for interrogation and analyses. It is the first of its kind, which
enables the construction and analysis of neurodegenerative diseases through protein interaction networks,
regulatory networks and Boolean networks. The database has a three-tier architecture - foundation, function and
interface. The foundation tier contains the human genome data with 23857 protein-coding genes linked to more
than 300 genes reported in clinical studies of neurodegenerative diseases. The database architecture was designed
to retrieve neurodegenerative disease information seamlessly through the interface tier using specific functional
information. Features of this database enable users to extract, analyze and display information related to a disease

Conclusions: The application of NeuroDNet was illustrated using three case studies. Through these case studies,
the construction and analyses of a PPl network for angiogenin protein in amyotrophic lateral sclerosis, a
signal-gene-protein interaction network for presenilin protein in Alzheimer's disease and a Boolean network for a
mammialian cell cycle was demonstrated. NeuroDNet is accessible at http://bioschool.iitd.ac.in/NeuroDNet/.
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Background

Neurodegenerative diseases (NDDs) are characterized by
progressive neurological impairment caused by the accu-
mulation of abnormal proteins and neuronal loss. The
abnormal proteins apparently alter neuronal functions
that lead to the disruption of synapses in neuronal sub-
populations, neural circuitry and higher-order neural
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architectures within specific regions of the brain. Since
neurological deficits are not necessarily associated with
neuronal loss [1], it is very likely that neurodegenerative
conditions might be caused by neuronal dysfunction.
The challenge lies in understanding how aberrations in
gene regulation, protein-protein interactions, and the
consequent alterations in signaling and metabolic path-
ways results in neuronal dysfunction. The task is even
more daunting considering the vast data that is being
created by genomic and proteomic research in biological
sciences. From the perspective of developing new

© 2013 Vasaikar et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
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therapies, important questions arise. How does one de-
cipher signal-gene-protein interactions that drive neuro-
degeneration? How does one integrate interaction
networks and clinical data to predict cognitive impair-
ment and disease? To answer these questions, it will be
necessary to rummage through information scattered
across public-domain websites and research literature.
Our objective is to gather and consolidate this informa-
tion under one portal for NDDs and provide network
tools to interrogate the data for identifying critical genes,
determine pathways that are aberrant, create protein-
protein interaction (PPI) networks to interpret disease
mechanisms and perform qualitative and quantitative
network analyses.

Previous instances of databases created to address spe-
cific problems underscores the importance of bringing
together information under a common fold for analyses.
The unifying principle for integrating this information
was protein and gene interactions across species as in
the case of BioGRID. BioGRID provides the interactions
for Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Caenorhabditis elegans, Drosophila wmelanogaster, Mus
musculus and Homo sapiens [2]. Each interaction record in
BioGRID is based on experimental evidence and is linked
to the supporting publication. MINT on the other hand
contains the molecular interactions experimentally verified
and reported in peer-reviewed journals [3]. Similarly, Reac-
tome, a database of human pathways, was created with
entries cross-referenced in a vocabulary associated with
standard databases such as Uniprot, NCBI Entrez Gene,
Ensembl, UCSC, HapMap, KEGG and primary research
literature to PubMed. It describes the role of 5272 human
proteins and 3504 macromolecular complexes in 3847
reactions organized into 1057 pathways [4]. Sage Bionet-
works, ELIXIR, Biomart and InterMine, have recognized
the value of collecting, curating and categorizing data, and
have undertaken the colossal task of creating infrastructure
for the management of open source databases [5-7]. Many
other database resources available online have also been
developed to unify a class of data of interest [8].

Data related to neurodegenerative diseases has also
grown exponentially with recent advances in high through-
put genotyping techniques using microarrays. To enable
interpretation of the insurmountable data, databases have
been created to gather and rationalize the impact of muta-
tions and protein-protein interactions on clinical manifest-
ation of individual diseases. Some of the examples include
the databases for Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS) and Parkinson’s disease (PD). The
AD database AlzGene, was developed to understand the
genetic proclivity of AD and predict candidates for other
complex genetic diseases [9]. AlzGene catalogues all gen-
etic association studies published in the field of AD. Meta-
analyses results of polymorphisms with genotypes are
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publicly available at this site. Yang et al. [10] have floated a
database that contains experimentally confirmed substan-
tianigra expressed sequence tags from healthy and PD
patients. The database captures genetic variation, differen-
tial gene expression, gene-regulating elements, mitochon-
drial proteins, and pathways associated with PD-related
genes. To integrate genetic and clinical information on
ALS, Yoshida et al. [11] developed a database that provides
180 unique variants identified in ALS patients along with
the corresponding clinical data. These databases are useful
to both experimentalists and theorists who wish to under-
stand data pertaining to a single disease of their interest in
relation to known information.

Many examples reported in the literature show that re-
construction and analyses of these networks has given a
deeper understanding of disease mechanisms and strat-
egies for therapeutic intervention. Goh et al. [12] has
shown that NDDs possess one of the most connected
networks through a disease-gene network analysis.
Understanding these networks is important because
genes associated with a disease are not randomly posi-
tioned, but occur in clusters that are positively corre-
lated with other similar diseases [13]. The study of
pathway-based genetic analysis in multiple sclerosis
(MS) indicated that the understanding of biological
mechanisms of disease pathogenesis and identification of
drug targets may come from distant associations [14].
Hwang et al. [15] performed dynamic systems analyses
to identify perturbations of cellular processes that were
required for prion replication. PPI analysis of a network
created by combining library and matrix yeast two-
hybrid screens, led to the discovery that GIT1, a GTPase
activating protein that modulates actin polymerization,
spine morphology, and synapse formation in neuronal
cells, enhanced the aggregation of the huntingtin pro-
tein. Further, through these analyses, they detected 6
new huntingtin interacting proteins of unknown function
[16]. Limviphuvadh et al. [17] focused on protein—protein
interaction networks associated with causative proteins of
six neurodegenerative disorders. They investigated correl-
ation among NDDs using domain characteristics and
found that PD and HD showed highest correlation among
them. However, the challenge lies in the development of a
theoretical framework that will enable the organization of
existing data, and permit the interrogation and interpret-
ation of mechanisms causing disease.

It is in this light that we have created a database, Neu-
roDNet, that includes information about twelve neurode-
generative diseases - adrenomyeloneuropathy, Alzheimer
disease, amyotrophic lateral sclerosis, ataxia-telangiectasia,
dentatorubral-pallidoluysian atrophy, Friedreich ataxia,
frontotemporal dementia, Huntington disease, Lewy body
dementia, Parkinson disease, prion disease, progressive
supranuclear palsy. It accounts for the interactions and
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regulation between signaling molecules, genes and pro-
teins. This database is also the first of its kind, which
enables the construction and analysis of NDDs through
PPI, regulatory and Boolean networks. We also present
the results of three case studies, which demonstrate the
power of the analytical tools featured in NeuroDNet.

Construction and content

Database architecture

The NeuroDNet database was developed in MySQL and
is currently hosted on an APACHE http server located in
the computer service centre of the Indian Institute of
Technology Delhi. The database was built in a three-tier
structure - foundation, function and interface (Figure 1).
The foundation tier (ndnGNM) of NeuroDNet contains
all the genes of the human genome-45020 genes of which

Page 3 of 12

23857 are protein coding. The gene data for ndnGNM
was acquired from the NCBI human genome database
[ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mamma-
lia/]. Placed above ndnGNM is the table ndnDGN that
contains genes associated with neurodegenerative diseases.
Disease description and associated information was col-
lected manually from MeSH [http://www.ncbinlm.nih.
gov/mesh/] and OMIM [http://www.ncbi.nlm.nih.gov/
omim/]. The 305 gene populating ndnDGN were the ones
associated with patient data reported in the literature.
These genes include those reported for sporadic and
familial diseases, and in different ethnic groups.

The functional tier consists of six tables - ndnPRO (pro-
teins), ndnINT (human interactome), ndnSNP (SNPs),
ndnONT (gene ontology), ndnPHE (phenotype) and
ndnPAT (pathway). These tables were populated with data
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obtained from various public databases. Since data is
archived in different formats in these databases, the data
acquired was recorded in a format that permitted seamless
transition between different databases. The NCBI Gene
ID was retained to enable a cross mapping of the NeuroD-
Net output to other databases. Data for the Protein table
(ndnPRO) was obtained from Uniprot/Swiss-Prot data-
base [http://www.ebi.ac.uk/uniprot/]. The protein-protein
interaction data was assembled in two stages. First, the
interaction data was downloaded from HPRD, BioGRID,
DIP, MINT and Reactome [3,18,19]. Next, a PHP script
was written to traverse across the downloaded files to cap-
ture the gene IDs, protein IDs and protein-protein interac-
tions, and recorded in the ndnINT table. The data
consists of 23857 genes possessing 51388 interaction
edges. The SNP table was constructed using data obtained
from the literature and OMIM database by screening only
those that were associated with the NDDs. The gene
ontology associated with the ndnDGN was acquired
through a MATLAB script from the Gene Ontology Bio-
logical Process category and stored in the ndnONT table.
Similarly, the phenotype associated with the disease genes
was also obtained from published literature and from
OMIM through NCBI the retrieved data was manually
verified and then stored in the ndnPHE table. Signaling
pathway information obtained from images given in
KEGG, Reactome, BIOCARTA, and Cell SnapShots was
collated, converted into adjacency matrices and then
stored in the ndnPAT table. The collected information
was organized into six signal-protein-gene interaction
sub-tables, namely, Sig-Sig (ndnPSS), Sig-Prot (ndnPSP),
Sig-Gene (ndnPSG), Prot-Prot (ndnPPP), Prot-Gene
(ndnPPG) and Gene-Gene (ndnPGG). The information
contained in these six tables is used to create signal-
protein-gene networks by NeuroDNet when a user
accesses the “Network Model” feature of the interface
programme. The network is constructed in SBML script
assuming first order rates and output as an XML file
which is ready for performing simulations in Celldesigner
if the user can provide the kinetic parameters.

The user interface consists of two modules. The first
module contains the algorithms coded in PHP. It per-
forms computations required to complete the queries
requested by the user. The second module, the graphical
user interface communicates with the first module to
execute a request. It is written in html and it provides
the user with the features offered by NeuroDNet
database.

User interface

The home page of NeuroDNet gives a brief description
of the database with a link for more information. There
are four links given in the welcome panel - Query, Net-
work, Disease Models and Boolean Analysis that enables
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a user to explore the different features of the website.
The quick links are meant to take a revisiting user dir-
ectly to a feature of interest. Using the first option
“Query”, the database may be explored under the follow-
ing categories - Disease, Gene, Protein, Polymorphism
and Pathway. The class “Disease” contains the list of
genes grouped by disease. For example, selecting “Alz-
heimer’s disease” gives the list of all the genes recorded
in the database associated with AD. The user is free to
pursue a gene of interest in this list by selecting links
provided in the table displayed. “Gene ID” automatically
connects the user to the corresponding gene page in
NCBI, “Protein” to the corresponding Uniprot page for
this protein, “Reference” to the research article, and
“NDN Gene” to the NeuroDNet database page Gene De-
scription. Gene Description comprises six sections -
Gene, Protein, SNPs, Structures from PDB [http://www.
resb.org/], PPI and Network Model. The database may
be explored through links provided in each of these sec-
tions depending on the interest of the user. For example,
selecting protein-protein interaction (PPI) option will
display interacting proteins based on its cellular location.
An option is provided to increase the neighbourhood de-
gree for the protein. This enables the user to expand the
PPI network to include related proteins in the analysis.
At present, the upper limit on the degree is 3. We have
also provided the user with the option of filtering the
PPI network result by grouping it according to function,
phenotype and occurrence in a pathway.

The second option “Network” contains three sub-
categories - PPINet, DiseaseNet, and PathwayNet. The
PPINet window accepts a list of genes or a text file that
are part of a network under study. NeuroDNet processes
this information and outputs a table where the connect-
ivity of the network is shown in terms of the binary asso-
ciations. When the simple example {A2M,APP,APOE} was
submitted in the PPINet window, it gave the binary asso-
ciations between A2M <> APOE and APOE «> APP. The
output text file can be visualized graphically as a network
using Cytoscape. The Entrez gene ID and Uniprot/Swiss-
Prot protein ID given in the output text file are unique
identifiers that may be used for global representation. The
purpose of the “DiseaseNet” is to determine if interactions
exist between the queried disease and other NDDs
[12,20]. The result is displayed as a text file. “Pathway-
Net” lists pathways contained in ndnPAT that are asso-
ciated with NDDs. The user may select any pathway of
interest and determine the possible associations with
other pathways in the NeuroDNet database. The path-
ways that possess crosstalk with the one of interest are
given in a text file.

“Disease Model” is the third feature offered by Neu-
roDNet. It lists the collection of disease models that are
linked to Celldesigner [http://www.celldesigner.org/]
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images and the corresponding SBML files stored in the
database. These models were redrawn in Celldesigner
from their original sources in reported literature. The
user can download the SBML file from the database
and visualize the model using a suitable network
visualization tool. A PubMed reference is included with
each model to refer the user to the original publication
associated with it. These models may be easily
expanded to include additional components for study-
ing the dynamic behaviour of genes or proteins related
to the disease.

The fourth option, “Boolean Analysis”, has been widely
used to model regulatory networks and signaling path-
ways. This feature enables the user to determine the
dynamic behaviour of a network of interest by assuming
that each node of the network possesses a binary state.
The Boolean analysis panel accepts two inputs, Nodes
and Edges, for converting the network into matrices
required for computation. An option is also available for
specifying non-regulated nodes (self-degrading nodes).
The user must provide the network information in the
prescribed format through a window that accepts Boolean
functions and select one of the two Boolean rules hosted
by the database for determining the steady states of the
network. Additional information and illustrative examples
are given in the help link and user manual.

Maintenance and update

All database entries were meticulously curated for accu-
racy. The following procedure was devised for data in-
put, maintenance and update. The data was first
acquired automatically by employing programme scripts.
This primary information was checked against experi-
mental findings described in the original source reported
in the literature. Further, information about the asso-
ciated pathways, phenotypes, proteins and their interac-
tions were crosschecked and then annotated to the
standard syntax. The error-free data was then stored as
primary raw data files from which each of the six tables
were updated automatically. The current data in Neu-
roDNet is up-to-date and will be updated quarterly.

Utility and discussion

The database tools were created to facilitate disease ana-
lyses using a systems-based approach. Using these tools,
the user can identify the critical genes or proteins asso-
ciated with a NDD. The user may study the networks,
for example, using graph-theoretic methods or study the
dynamic behaviour of individual units or the complex
assembly of units that constitute the network. Using
NeuroDNet it is possible to evaluate hypothesis, query
genes implicated or suspected in NDDs, examine experi-
mental data in the light of gene and protein associations
predicted by the network, visualize interactions and
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design experiments to validate predictions, and examine
experimental data using information under one umbrella
offered by this database. We present three case studies
to illustrate the application of NeuroDNet.

Case study 1: Protein neighbourhood network for human
angiogenin protein

ALS is a debilitating neurological disease that affects
humans across ethnic groups. Missense mutations in the
protein angiogenin (ANG) that result in the partial or
complete loss of angiogenic functions have been impli-
cated with ALS [21,22]. Newer therapies for ALS may
arise from a better understanding of mutations in ANG.
Therefore, there is a need to understand how the loss of
angiogenic properties may affect other proteins that are
related directly or indirectly through various interactions
at the cellular level. Through an exhaustive study of
these interactions, it may be possible to elucidate how
these mutations or SNPs lead to apoptosis of motor
neurons.

Through the example of ANG, we illustrate how the
database may be used to generate protein neighbour-
hood networks for visualization and analysis. ALS and
ANG were selected from the Disease and Gene options
from the Query panel respectively to enter the Gene De-
scription page. The graphical view of PPI showed the first
neighbourhood proteins {ACTC1, ACTN2, ATP6API1,
PTEN, RNH1, TDGF1, TNFSF8} and their locations in a
cellular environment. The interactions may be visualized
using the Cellular View or Graphical View; the result may
also be downloaded and visualized in Cytoscape [http://
www.cytoscape.org/] (Additional file 1: Figure S1).

Increasing the neighbourhood degree increases the
number of interactions and complexity of the interaction
network. ANG is an extracellular protein; when trans-
ported to the nucleus from the cytoplasm, it interacts
with seven proteins (Additional file 1: Figure Sla) that
participate in regulation of angiogenesis (RNH1), cardiac
muscle development (ACTC1, TDGF1, PTEN), vascula-
ture development (ANG, TDGF1, PTEN) and apoptosis
(TDGF1, PTEN, ACTN2, TNFSF8, ATP6AP1). The sec-
ond neighbours arising from these seven proteins in-
clude 119 proteins possessing 124 edges of interactions
(Additional file 1: Figure S1b). Exploring the network
further to include third neighbours recruited an add-
itional 2580 proteins with 4424 edges of interactions
(Additional file 1: Figure S1c). Network expansion to in-
clude higher degree neighbours is useful in identifying
proteins engaging in crosstalk with other signalling path-
ways through direct or indirect interactions. Ahn et al.
[23] had observed that ANG causes up regulation of
Rb1, RBX1, NBN, CDK4, CDC34, SMARCA?2, STATS3,
CDK1, and MAp2; whereas down regulation of IkB-
alpha, p55cdc, p35, BRCA, KAP, PCNA proteins in
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human umbilical vein endothelial cells (HUVECS).
When the network was expanded to the third degree
neighbour, we observed that all these proteins are
included in the PPI network result. PPI networks, such
as the one generated for ANG (Figure 2), may be created
for other proteins and correlated with observed experi-
mental observations.

Case study 2: PSEN1 network model and effect on

calcium homeostasis

Presenilin-1 and presenilin-2 (PSEN1 and PSEN2), are
transmembrane protein modulators associated with early
onset familial Alzheimer’s disease (FAD) [24]. It is a con-
served polytopic transmembrane protein predominantly
localised in endoplasmic/sarcoplasmic reticulum (ER/SR)
and participates in the cleavage of the amyloid precursor
protein (APP) which results in the formation of amyloid-
B-peptides [25]. The aggregation of the “sticky” form,
amyloid-P42, into fibrillar structures has been established
as one of the mechanisms leading to all known clinical
symptoms of Alzheimer’s disease. Consequently, we
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decided to investigate the role of PSEN1 in neuronal cell
death in AD.

NeuroDNet tool under “Gene” was employed to con-
struct the wiring diagram. This interactive tool allows
the user to select a gene of interest from a disease ca-
tegory and retrieve interactions from the information
contained in the six tables of “Pathway” to assemble the
signal-gene-protein interactions. The information is
retrieved and stored as an Excel spreadsheet, which is
then converted into the SBML format using a PHP
script. The XML file is displayed as a network using
Celldesigner (Additional file 1: Figure S2).

PSENT1 is part of the y-secretase complex involved in
APP cleavage, notch signaling pathway and calcium
homeostasis. The “Network Model” feature of NeuroD-
Net revealed that PSEN1 protein is an important vertex
that regulates the cell proliferation, differentiation and
apoptosis [26-28]. The network gives details of known
interactions of PSEN1 mediated through the vertices
Notch, APP and Ca®*. The information obtained may be
used in verifying experimental results, building global
systems model or examining specific phenomena. We

@
®

@ 9

Poope\®?®

Figure 2 PPI network showing how ANG and its neighbours are linked to genes causing ALS. ANG (blue node) is connected to ALS
associated proteins (red nodes) via intermediate proteins identified by expanding the network to include higher neighbourhood levels using
NeuroDNet. Proteins that are up-regulated (green circles) or down-regulated (yellow circles) by ANG in HUVECs appear as the third neighbour of ANG.
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illustrate how the interaction of the PSEN1 vertex with its
neighbours may be used to understand how calcium leak
from intracellular stores promotes neurodegeneration.

We asked the question whether the loss of channel
function or its permanent opening caused by PSENI
mutation disrupted calcium homeostasis. To answer this
question we first studied the PSEN1 interactions. The
SBML network generated using NeuroDNet showed
how Ca®* interacts with channels and regulatory proteins.
The differential equation model described by Marhl et al.
[29] was obtained from the SBML repository [http://www.
ebi.ac.uk/biomodels/]. This model explained complex
intracellular Ca®* oscillations using Ca®* kinetics to de-
scribe fluxes from the ER and mitochondria to the cyto-
plasm, and the role of Ca>* binding proteins in regulating
the homeostasis.

The calcium leak was attributed to the zymogen form
of PSEN1 and the parameter associated with the corre-

. . EN1
spondmg equation, the rate constant zeflk , was
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perturbed (from normal to aberrant) over 0.05 - 0.3 s™
range. We observed that the amplitude of cytoplasmic
Ca®* oscillations decreased while the frequency
increased (Figure 3a). Absence of the “burst” signal of
Ca®" in the cytoplasm indicated a severe dysfunction.
When the ER store of Ca** was depleted below 0.72 puM,
the cytoplasmic control was lost completely (Figure 3b).
Similar results were observed by Zampese et al. [30] in
PSEN2 mutant SH-SY5Y and HeLa cells. The mitochon-
drial regulation of the ER was also examined through a
phase diagram. The limit cycle observed for normal par-
ameter values disappeared when Khoi'' increased to
0.3 5!, suggesting breakdown of ER-mitochondria Ca**
control (Figure 3c). Our results suggest that PSEN1 mal-
function increased Ca®* leak frequency, which in turn
was responsible for the loss of ER-mitochondria Ca**
regulation. Loss of this regulation effectively nullified the
mitochondrial Ca®* induced Ca®' release (mCICR). It
was shown that changes in spatiotemporal concentration
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Figure 3 Effect of leaky channel attributed to PSEN1 on calcium oscillations. (a) Perturbation in rate constant ki, over 0.05-0.3 s range
affects amplitude and frequency of calcium oscillations in cytoplasm, mitochondria and ER. Absence of leaky current shows increase in ER and
mitochondrial Ca®* concentration (red line) whereas increase in leaky current decreases amplitude and increases frequency (brown line, 0.3 s in
cytoplasm. (b) Phase diagram between cytoplasmic and ER calcium store shows loss of regulation of calcium between two organelles.

(c) Similarly, breakdown of ER-mitochondria Ca”* control with increase in leaky current, is observed in ER-mitochondria phase diagram. The color
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of mCICR caused a permanent opening of the perme-
ability transition pore (PTP) which ultimately triggered
apoptosis [31-33].

An alternative explanation emerges when the ability of
presenilins to form ion channels is considered. The
zymogen form of presenilins localized in the ER/SR
function as calcium channels and is responsible for the
“leak” calcium currents involved in calcium homeostasis
[34,35]. The mechanism of calcium leak into the cytosol
has remained largely unexplained. Hofer et al [36]
observed a decrease in free calcium in the ER lumen in
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studies where the SERCA (sarco/endoplasmic reticulum
calcium ATP-ases) was inhibited by the addition of
thapsigargin. This leak remained unaffected even when
the RyRs and IP3Rs were inhibited indicating that the
basal leak rate of calcium was dependent on other un-
known mechanisms. However, evidence that is more re-
cent suggests that RyRs and IP3Rs may participate in the
calcium leak under certain pathological conditions and in
apoptotic phenotypes. Structural studies have shown that
the cytoplasmic domain becomes dysfunctional creating a
“channel only” behaviour [37]. Under normal physiological

D CyeD
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Figure 4 Mammalian cell cycle network analysis using NeuroDNet. (a) Cell cycle regulatory graph was redrawn from Fauré et al. [53].
Transition of states output of the NeuroDNet using a synchronous simulation has been shown. The cell cycle states through which a mammalian
cell undergoes is shown (cyclic attractor) (b). The singleton attractor represents a steady state condition of the cell. The trajectory followed by the
cell to reach GO phase where intermediate nodes in the path depict the synchronous progression (c). The binary sequences shown in (b) and

() correspond to the state of the nodes (i=1, 2, ..., 10) in the order given in Table 1.
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conditions, basal calcium leak has been attributed to na-
tural ionophores, golgi, endosomes, and the potential dif-
ference between ER and cytoplasm [38]. Although the
literature presents conflicting views on how the basal cal-
cium leak is regulated, it is clear that calcium imbalance in
the cytosol may push the cell into apoptotic state. Aberra-
tion in the PSENI1 network has been implicated in AD
and its role in calcium homeostasis deserves further ex-
perimental investigation.

Case study 3: Mammalian cell cycle - NeuroDNet Boolean
analysis tool

Biological networks comprise the intricate circuitry of
signals, genes, proteins and metabolites that brings
about the kaleidoscope of changes within the cell. The
interactions between the different molecular species,
results in the observed complexity in cellular func-
tions. Usually, computationally manageable sub-
networks are constructed and analyzed to obtain
insight into specific aspects of cellular behaviour. The
dynamics of these sub-networks have been described
with ordinary differential equations (ODE) but the
ODE formalisms is constrained by the size of the sub-
network and the dearth of kinetic and parametric in-
formation [39]. In such circumstances, it is more desir-
able to use Boolean networks, which are based on
logical formalisms.

Boolean networks have been widely used to model gene
regulatory networks and signaling pathways [40-42]. Each
element of the system has a binary state ({0, 1} = {on, off})
and is therefore discrete, deterministic and parameter free
[43]. The Boolean network is a graph, where the node (or
vertex) v denotes in general, a gene or protein, and the
edge e defines the nature of the interaction between two
nodes. A network of N nodes has 2" possible states. Time
evolution of the network may be synchronous or asyn-
chronous and the eventual steady states are called
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“attractor” states. The attractors, represented by the on-off
state of genes in the network, correspond to important
physiological states of the cells. For example, the state
may indicate growth, differentiation or apoptosis [44].
Boolean analyses are particularly useful in cases where a
qualitative insight is sought and for a better understanding
of the network structure without invoking computation-
ally intensive procedures.

More recently, the research has focused on developing
generalized logical formalisms [45], examining robust-
ness of networks [46], using interaction graph represen-
tations [47], investigating scalability across systems [48]
and designing new efficient algorithms [49]. A number
of systems such as, A. thaliana morphogenesis, yeast cell
cycle, T-cell signaling and T-lymphocyte survival signal-
ing, have been studied using Boolean networks to gain
intuitive understanding [50-53].

We illustrate the use of the Boolean analysis tool fea-
tured in NeuroDNet using the mammalian cell cycle
described by Fauré et al. [54] (Figure 4a). Emerging
evidence suggests that a strong relationship exists be-
tween the expression of cell cycle proteins and neurode-
generative diseases [55]. We describe the steps used to
study this mammalian cell cycle to predict cellular fates
(Figure 4a). The Boolean network comprising 10 nodes
and 49 edges explained the emergence of GO quiescent
phase and non-spurious dynamical cycle. The Fauré
cycle was reconstructed using NeuroDNet’s “Boolean
Network” feature. The network properties {G = (10, 49)}
were first keyed in. Next, the syntax for defining the
logical operations of the network was written in the desig-
nated text window (Table 1). In the equations, the " node
of a network was represented by $nodeli], (i=1, 2
10). The Boolean rules and algorithm for computation
were then selected and executed to obtain the attractor
states (steady states). The sign associated with edge of
the network, qualified the kind of interaction existing

Table 1 An example of the syntax for describing the logical operations of the mammalian cell cycle network

Product Node Syntax

CycD Snode[1]  $node[1] = $node[1];

Rb Snode[2]  $node[2] = ((Snode[1]) & [(Snode[4]) & [(Snode[5]) & [(Snode[10]) | (Snodel6] & [(Snode[1]) & (Snode[10]));

E2F Snode[3] $node[3] = (I(Snode[2]) & l(Snode[5]) & !(Snode[10]) | (Snode[6] & I(Snode[2]) & !(Snode[10));

CycE Snode[4] Snode[4] = (Snode[3] & I(Snode[2]));

CycA Snode[5] 2(n50ded5] )(Snode ] & I(Snode[2]) & (Snode[7]) & (Snode[8] & $node[9))) | (Snode[5] & [(Snode[2]) & [(Snode[7]) & [(Snode[8]

node[9

p27 Snodel6] Snode[6] = (I(Snode[1]) & !(Snodel4]) & [(Snode([5]) & I(Snode[10]) [(Snodel6] & !(Snodef4] & Snodel5]) & (Snode[10])
&1 $node 1)

CDC20 Snode[7]  S$Snode[7] = Snode[10];

CDH1 Snodel8] Snode[8] = (I(Snode[5]) & (Snode[10])) |Snode(7] |(Snodel6] & !(Snode[10]));

UbcH10  $node[9] $node[9] = I(Snode(8]) [(Snode[8] & $node[9] & (Snode[7] | $node[5] | Snode[10));

CycB Snode[10]  $node[10] = ({($nodel7]) & (Snode[8)));

*1,&, | represents NOT, AND, OR logic gate.
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between two nodes - activation (+1) or inhibition (-1).
At each node this information was processed using
logic gates such as AND, OR and NOT. The dynamic
status of each node was updated synchronously. The
state of a node {0 or 1} was assigned the result of the
logical operation at each instant, that is

IHZ aiij(t) >1

Si(t+1) = /
( ) OHZ Lll'ij(t) <1
j

(1)

Where S;(t) and S;(¢ + 1) represent the successive states
of the i node, S(t), a; = +1 represents interacting nodes
depending on whether the edge is activating or inhibit-
ing. The network details submitted by the user are pro-
cessed by an algorithm written in PHP script residing in
the user interface module. The algorithm outputs a text
file containing the 2™ Boolean outcomes and the list of
singleton attractors and cyclic attractors which signify
the states that the network can acquire. The output text
files can be visualized for determining dynamic trajecto-
ries in a suitable network visualization tool such as
Cytoscape (Figure 4b, c). Each attractor state represented
as the binary sequence shown in (b) and (c), corresponds
to the state of nodes taken in the order given in Table 1.

Cyclin D (CycD) controls the expression of retino-
blastoma (Rb), a key tumor suppressor. During the G1
to S phase transition, E2F transcription factor (E2F) acti-
vates transcription of Cyclin E (CycE) and Cyclin A
(CycA), which in turn controls the anaphase-promoting
complex (APC) in cyclic fashion. We obtained one
singleton attractor state that represented the quiescent
GO phase {0100010100} where each Boolean state corre-
sponds to node (i=1, 2, ..., 10) (Table 1). The other
stable states represent cyclic attractors consisting of seven
successive states describing dynamical cycle consistent
with those reported by Fauré et al. [54]. Mutational stud-
ies were also performed using this cell cycle network. The
Boolean network for Rb mutant was executed and it was
observed that the network lost its singleton attractor. In-
stead, a cyclic attractor was created that depicted lack of
restriction point as shown by Novak and Tyson [56]. The
results of this example showed that Boolean modeling tool
correctly predicted the outcomes of the network and its
dynamic behaviour qualitatively.

Conclusion

NeuroDNet contains comprehensive information about
the twelve neurodegenerative diseases under one portal.
The database has a three-tier structure. Since the foun-
dation tier contains data from the human genome upon
which a table with disease-associated genes is con-
structed, it can be easily expanded by adding new tables
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containing genes of other diseases. NeuroDNet offers
the user a bouquet of tools and features to analyze the
information by creating PPI networks, signal-gene-
protein interaction pathways and Boolean networks. The
ANG case study shows how the PPI network may be
extended to include higher degree neighbours and trace
interaction routes between proteins of interest. The PSEN1
example demonstrated how the in-built programmes of
NeuroDNet extracted the information contained in differ-
ent tables of the database to create an interaction pathway.
This case study also explained how PSEN1 is implicated in
mCICR regulation. Finally, the Boolean analysis of the
mammalian cell cycle was used to portray the power of
qualitative analysis. In the absence of kinetic data, the
Boolean network identified the physiological states of the
cell cycle. The network generated by NeuroDNet predicted
cell-cycle states and the GO attractor state by a simple syn-
chronous method. The features provided enable the user
to identify unexpected disease linkages of genes and pro-
teins. Higher degree neighbourhood networks created in
NeuroDNet can be visualized to determine critical hubs
and crosstalk associations between interacting partners.
The tools may also be used to design directed experiments
that provide better insight and reveal potential druggable
targets. In future, NeuroDNet will be expanded to include
all known neurodegenerative diseases.

Availability and requirements
The current version of the NeuroDNet is hosted freely
at http://bioschool.iitd.ac.in/NeuroDNet/.

Additional file

Additional file 1: Figure S1. ANG neighbourhood network created
using NeuroDNet. The complexity of ANG PPI network increases when
higher degree neighbourhood interactions are considered. The figure
shows ANG (yellow) and its first (a), second (b), and third (c) degree
neighbours in light blue, dark blue and green, respectively. Figure S2.
PSENT interaction pathway generated using NeuroDNet in SBML format
and visualized using Celldesigner. PSENT1 is a part of y-secretase complex
involved in Notch signaling and APP processing. It also acts as Ca®* leaky
channel in ER (inset). The directed graph shows the interactions between
the nodes [activation —; inhibition iﬂ- The locations of nodes in
cellular compartments are also shown. Here, the primary interaction of
PSEN1 with y-secretase and Ca®* was used in NeuroDNet to create this
extensive pathway that accounts for the main elements of Notch
signaling, Calcium homeostasis, CAMKK cascade of events mediated
through nodes like NOTCHT1, NICD (notch intracellular domain) and CAM
(calmodulin).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

The idea was conceived by JG and development carried out by SWV, JG, BJ.
The clinical data collection, database organization and script writing was
done by SW. AKP helped in collection of ALS data. JG and SWV wrote the


http://www.biomedcentral.com/content/supplementary/1471-2202-14-3-S1.doc

Vasaikar et al. BVIC Neuroscience 2013, 14:3
http://www.biomedcentral.com/1471-2202/14/3

manuscript. All authors read and approved the final version of the
manuscript.

Acknowledgements

The authors thank Soumen Basak and Sanjoy Bhattacharya for their valuable
suggestions. NeuroDNet was created with financial support received from
the Department of Biotechnology (DBT), India for carrying out this work. One
of the authors, SW acknowledges the Council of Scientific and Industrial
Research, Government of India, for research fellowship.

Author details

'Kusuma School of Biological Sciences, Indian Institute of Technology Delhi,
Block 1A, Room No. 307, Hauz Khas, New Delhi 110016, India. “Department
of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
3Supercomputing Facility for Bioinformatics & Computational Biology, New
Delhi 110016, India.

Received: 17 August 2012 Accepted: 13 December 2012
Published: 3 January 2013

References

1. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA,
Katzman R: Physical basis of cognitive alterations in Alzheimer's disease:
synapse loss is the major correlate of cognitive impairment. Ann Neurol
1991, 30:572-580.

2. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M,
Oughtred R, Lackner DH, Béhler J, Wood V, Dolinski K, Tyers M: The BioGRID
Interaction Database: 2008 update. Nucleic Acids Res 2008, 36:D637-D640.

3. Ceol A, ChatrAryamontri A, Licata L, Peluso D, Briganti L, Perfetto L,
Castagnoli L, Cesareni G: MINT, the molecular interaction database: 2009
update. Nucleic Acids Res 2010, 38:D532-D539.

4. Croft D, OKelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P,
Gopinath G, Jassal B, Jupe S, Kalatskaya |, Mahajan S, May B, Ndegwa N,
Schmidt E, Shamovsky V, Yung C, Birney E, Hermjakob H, D'Eustachio P, Stein L:
Reactome: a database of reactions, pathways and biological processes.
Nucleic Acids Res 2011, 39:D691-D697.

5. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F, Janssens H, Ji W,
Mclaren P, North P, Rana D, Riley T, Sullivan J, Watkins X, Woodbridge M,
Lilley K, Russell S, Ashburner M, Mizuguchi K, Micklem G: FlyMine: an
integrated database for Drosophila and Anopheles genomics.

Genome Biol 2007, 8:R129.

6. Haider S, Ballester B, Smedley D, Zhang J, Rice P, Kasprzyk A: BioMart
Central Portal-unified access to biological data. Nucleic Acids Res 2009,
37:W23-W27.

7. Ghosh S, Matsuoka Y, Asai Y, Hsin KY, Kitano H: Software for systems
biology: from tools to integrated platforms. Nat Rev Genet 2011,
12:821-832.

8. Klingstrém T, Plewczynski D: Protein-protein interaction and pathway
databases, a graphical review. Brief Bioinform 2011, 12:702-713.

9. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE: Systematic meta-
analyses of Alzheimer disease genetic association studies: the AlzGene
database. Nat Genet 2007, 39:17-23.

10. Yang JO, Kim WY, Jeong SY, Oh JH, Jho S, Bhak J, Kim NS: PDbase: a
database of Parkinson’s disease-related genes and genetic variation
using substantianigra ESTs. BMC Genomics 2009, 10(Suppl 3):532.

11. Yoshida M, Takahashi Y, Koike A, Fukuda Y, Goto J, Tsuji S: A mutation
database for amyotrophic lateral sclerosis. Hum Mutat 2010,
31:1003-1010.

12. Goh Kl, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL: The human
disease network. Proc Natl Acad Sci U S A 2007, 104:8685-8690.

13. Ideker T, Sharan R: Protein networks in disease. Genome Res 2008,
18:644-652.

14. Baranzini SE, Galwey NW, Wang J, Khankhanian P, Lindberg R, Pelletier D,
Wu W, Uitdehaag BM, Kappos L, GeneMSA Consortium, Polman CH,
Matthews PM, Hauser SL, Gibson RA, Oksenberg JR, Barnes MR: Pathway
and network-based analysis of genome-wide association studies in
multiple sclerosis. Hum Mol Genet 2009, 18:2078-2090.

15. Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R,
Young R, Spicer D, Price ND, Hohmann JG, Dearmond SJ, Carlson GA, Hood LE:
A systems approach to prion disease. Mol Syst Biol 2009, 5:252.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Page 11 of 12

Goehler H, Lalowski M, Stelzl U, Waelter S, Stroedicke M, Worm U, Droege A,
Lindenberg KS, Knoblich M, Haenig C, Herbst M, Suopanki J, Scherzinger E,
Abraham C, Bauer B, Hasenbank R, Fritzsche A, Ludewig AH, Blssow K,
Coleman SH, Gutekunst CA, Landwehrmeyer BG, Lehrach H, Wanker EE: A
protein interaction network links GIT1, an enhancer of huntingtin
aggregation, to Huntington’s disease. Mol Cell 2004, 15:853-865.
Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M: The commonality
of protein interaction networks determined in neurodegenerative
disorders (NDDs). Bioinformatics 2007, 23:2129-2138.

Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK,
Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, Ibarrola
N, Deshpande N, Shanker K, Shivashankar HN, Rashmi BP, Ramya MA, Zhao
Z, Chandrika KN, Padma N, Harsha HC, Yatish AJ, Kavitha MP, Menezes M,
Choudhury DR, Suresh S, Ghosh N, Saravana R, Chandran S, Krishna S, Joy
M, et al- Development of human protein reference database as an initial
platform for approaching systems biology in humans. Genome Res 2003,
13:2363-2371.

Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The
Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004,
32:D449-D451.

Ahmed SS, Ahameethunisa AR, Santosh W, Chakravarthy S, Kumar S:
Systems biological approach on neurological disorders: a novel
molecular connectivity to aging and psychiatric diseases. BMC Syst Biol
2011, 5:6.

Kishikawa H, Wu D, Hu GF: Targeting angiogenin in therapy of
amyotropic lateral sclerosis. Expert Opin Ther Targets 2008, 12:1229-1242.
Padhi AK, Kumar H, Vasaikar SV, Jayaram B, Gomes J: Mechanisms of loss of
functions of human angiogenin variants implicated in amyotrophic
lateral sclerosis. PLoS One 2012, 7:€32479.

Ahn EH, Kang DK, Chang SI, Kang CS, Han MH, Kang IC: Profiling of
differential protein expression in angiogenin-induced HUVECs using
antibody-arrayed ProteoChip. Proteomics 2006, 6:1104-1109.

Tandon A, Fraser P: The presenilins. Genome Biol 2002, 3:3014. 1-9.
Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T,
Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey Al,
Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS:
Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abetal-
42/1-40 ratio in vitro and in vivo. Neuron 1996, 17:1005-1013.

Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S: Skeletal and
CNS defects in Presenilin-1-deficient mice. Cell 1997, 89:629-639.
Handler M, Yang X, Shen J: Presenilin-1 regulates neuronal differentiation
during neurogenesis. Development 2000, 127:2593-2606.

Presente A, Boyles RS, Serway CN, de Belle JS, Andres AJ: Notch is required
for long-term memory in Drosophila. Proc Natl Acad Sci U S A 2004,
101:1764-1768.

Marhl M, Haberichter T, Brumen M, Heinrich R: Complex calcium
oscillations and the role of mitochondria and cytosolic proteins.
Biosystems 2000, 57:75-86.

Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P:
Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria
interactions and Ca2+ cross-talk. Proc Nat/ Acad Sci U S A 2011,
108:2777-2782.

Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA,
Pozzan T: Close contacts with the endoplasmic reticulum as determinants
of mitochondrial Ca2+ responses. Science 1998, 280:1763-1766.

Ichas F, Mazat JP: From calcium signaling to cell death: two
conformations for the mitochondrial permeability transition pore.
Switching from low- to high-conductance state. Biochim Biophys Acta
1998, 1366:33-50.

Hajnoczky G, Csordas G, Das S, Garcia-Perez C, Saotome M, Sinha Roy S, Yi M:
Mitochondrial calcium signalling and cell death: approaches for assessing
the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 2006,
40:553-560.

Simon SM, Blobel G: A protein-conducting channel in the endoplasmic
reticulum. Cell 1991, 65:371-380.

Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De
Strooper B, Yu G, Bezprozvanny I: Presenilins form ER Ca2+ leak channels,
a function disrupted by familial Alzheimer’s disease-linked mutations.
Cell 2006, 126:981-993.

Hofer AM, Curci S, Machen TE, Schulz I: ATP regulates calcium leak from
agonist-sensitive internal calcium stores. FASEB J 1996, 10:302-308.



Vasaikar et al. BMC Neuroscience 2013, 14:3 Page 12 of 12
http://www.biomedcentral.com/1471-2202/14/3

37.  Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H: Uncoupled IP3
receptor can function as a Ca2 + —leak channel: cell biological and
pathological consequences. Biol Cell 2006, 98:1-14.

38. Camello C, Lomax R, Petersen OH, Tepikin AV: Calcium leak from
intracellular stores-the enigma of calcium signalling. Cell Calcium 2002,
32:355-361.

39. Polynikis A, Hogan SJ, di Bernardo M: Comparing different ODE modelling
approaches for gene regulatory networks. J Theor Biol 2009, 261:511-530.

40. Gupta S, Bisht SS, Kukreti R, Jain S, Brahmachari SK: Boolean network
analysis of a neurotransmitter signaling pathway. J Theor Biol 2007,
244:463-469.

41. Garg A, Di Cara A, Xenarios |, Mendoza L, De Micheli G: Synchronous
versus asynchronous modeling of gene regulatory networks.
Bioinformatics 2008, 24:1917-1925.

42, Schlatter R, Schmich K, Avalos Vizcarra |, Scheurich P, Sauter T, Borner C,
Ederer M, Merfort |, Sawodny O: ON/OFF and beyond--a boolean model of
apoptosis. PLoS Comput Biol 2009, 5:21000595.

43, Glass L, Kauffman SA: The logical analysis of continuous, non-linear
biochemical control networks. J Theor Biol 1973, 39:103-129.

44.  Albert |, Thakar J, Li S, Zhang R, Albert R: Boolean network simulations for
life scientists. Source Code Biol Med 2008, 3:16.

45. Devloo V, Hansen P, Labbe M: Identification of all steady states in large
networks by logical analysis. Bull Math Biol 2003, 65:1025-1051.

46. LiF, Long T, LuY, Ouyang Q, Tang C: The yeast cell-cycle network is
robustly designed. Proc Natl Acad Sci U S A 2004, 101:4781-4786.

47. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED: A
methodology for the structural and functional analysis of signaling and
regulatory networks. BMC Bioinforma 2006, 7:56.

48. Humphries MD, Gurney K: Network ‘small-world-ness”: a quantitative
method for determining canonical network equivalence. PLoS One 2008,
3:20002051.

49. Ay F, Xu F, Kahveci T: Scalable steady state analysis of Boolean biological
regulatory networks. PLoS One 2009, 4:e7992.

50. Mendoza L, Thieffry D, Alvarez-Buylla ER: Genetic control of flower
morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics
1999, 15:593-606.

51. Mendoza L: A network model for the control of the differentiation
process in Th cells. Biosystems 2006, 84:101-114.

52.  Davidich MI, Bornholdt S: Boolean network model predicts cell cycle
sequence of fission yeast. PLoS One 2008, 3:e1672.

53.  Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr:
Network model of survival signaling in large granular lymphocyte
leukemia. Proc Natl Acad Sci U S A 2008, 105:16308-16313.

54. Fauré A, Naldi A, Chaouiya C, Thieffry D: Dynamical analysis of a generic
Boolean model for the control of the mammalian cell cycle.
Bioinformatics 2006, 22:¢124-e131.

55. Herrup K, Yang Y: Cell cycle regulation in the postmitotic neuron:
oxymoron or new biology? Nat Rev Neurosci 2007, 8:368-378.

56.  Novak B, Tyson JJ: A model for restriction point control of the
mammalian cell cycle. J Theor Biol 2004, 230:563-579.

doi:10.1186/1471-2202-14-3

Cite this article as: Vasaikar et al: NeuroDNet - an open source platform
for constructing and analyzing neurodegenerative disease networks.
BMC Neuroscience 2013 14:3.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Description
	Conclusions

	Background
	Construction and content
	Database architecture
	User interface
	Maintenance and update

	Utility and discussion
	Case study 1: Protein neighbourhood network for human angiogenin protein
	Case study 2: PSEN1 network model and effect on calcium homeostasis
	Case study 3: Mammalian cell cycle - NeuroDNet Boolean analysis tool

	Conclusion
	Availability and requirements
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

