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Abstract

for the reproducibility of this method.

CCC was 0.709 (95% Cl: 0.244; 0.909).

threshold, Hand knob

Background: For accuracy in navigated transcranial magnetic stimulation (nTMS), determination of the hotspot
location of small hand muscles is crucial because it is the basis for the resting motor threshold (RMT) and, therefore,
its spatial resolution. We investigated intra- and interobserver differences of hotspot mapping to provide evidence

Ten subjects underwent nTMS motor mapping of the hotspot for the abductor pollicis brevis muscle (APB) three
times. The first two sessions were performed by the same examiner; the third mapping was performed by a
different examiner. Distances between the first and second mappings (intraobserver variability) and between the
second and third mappings (interobserver variability) were measured.

Results: Intraobserver variability had a mean of 8.1 +3.3 mm (limits of agreement (LOA) 1.7 to 14.6 mm), whereas
mean interobserver variability was 10.3 + 3.3 mm (LOA 3.8 to 16.7 mm). Concerning RMT, CCC was 0.725 (95% Cl:
0.276; 0.914). The mean variability in the same cortical depth was measured as 5.7 + 3.3 mm (LOA —-0.7 to 12.2 mm)
for intraobserver and 9.2 +33 mm (LOA 2.7 to 15.8 mm) for interobserver examinations. When evaluating the RMT,

Conclusions: Overall, intraobserver variability showed higher reliability than interobserver variability. Our findings show
that we can achieve good reliability in hotspot determination, ranging within the calculated precision of the system.
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Background

In recent years, navigated transcranial magnetic stimula-
tion (nTMS) has been increasingly competing with other
diagnostic modalities in visualizing functional brain areas
[1]. Having started as an approach for determining cor-
tical motor areas, this promising technique has developed
into a multifunctional tool for various diagnostic and
therapeutic issues. Although intraoperative direct cortical
stimulation (DCS) is the gold standard for the mapping
of brain functions, it is not able to provide exact informa-
tion about the healthy human brain, mainly because of
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its invasiveness. One main benefit of nTMS is its non-
invasive nature, which allows the implementation of this
method in the preoperative setup [2]. Additionally, a cor-
relation of nTMS and DCS in motor mapping has already
been reported [1,3-5]. However, until now there have
only been a few studies on the reproducibility of nTMS
motor mapping and individual resting motor threshold
(RMT), especially concerning intra- and interobserver in-
vestigations. Former studies showed comparable results
in repeated mappings. However, these data is based on
non-navigated TMS [6].

Finding the same spot for determination of the RMT
seems crucial because the RMT determines spatial reso-
lution of N'TMS motor mapping. And despite various in-
fluencing factors which might impair the measurement,
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RMT should be determined at the same cortical spot.
Even when this claim does not mirror reality. Knowledge
about hotspot location stability in repeated n'TMS inves-
tigations is essential in detecting the correct RMT. In-
accuracy in this step at the beginning of the mapping
session causes imprecision in the whole procedure.

Moreover, besides preoperative n'TMS motor mapping,
recent data show that TMS also serves as a neuro-
physiological assessment of the functional status of the
patient’s motor system especially for neurorehabilitation
issues [7].

As the reliability of the hotspot location is crucial for
the accuracy of nTMS examinations, this study provides
data about intra- and interobserver variability in motor
mapping of the hotspot for the abductor pollicis brevis
muscle (APB).

Methods

Study design

Ten healthy subjects underwent nTMS motor mapping
of the hotspot for the right APB on the left hemisphere.
This examination was performed three times at three
different days. The first and second mappings were
conducted by the same investigator in order to evaluate
intraobserver variability. Additionally, interobserver vari-
ability was determined by comparing the second mapping
and a third mapping performed by a different examiner.
Both investigators were blinded to previous results and
their experience in nTMS was comparable. Moreover, both
investigators had considerable experience in nTMS map-
ping prior to this study.

Subjects

The volunteers suffered from no cerebral pathology and
were all right-handed. Five subjects were male, five subjects
were female. The median age was 24.2 years (range 22.7 to
30.3 years). No one was under any kind of medication.

Ethical standard

The study was conducted with the consent of the local
ethics committee of the Technical University of Munich
(registration number: 2793/10) and in accordance with
the Declaration of Helsinki. Written informed consent
was obtained from all volunteers prior to navigational
MRL

MRI acquisition

All subjects underwent MR imaging prior to the first
mapping. MRI was performed on a 3 Tesla MR scanner
combined with an 8-channel phased array head coil
(Achieva 3 T, Philips Medical Systems, The Netherlands
B.V.). The scanning protocol consisted of a 3D gradient
echo sequence (TR/TE 9/4 ms, 1 mm? isovoxel covering
the whole head, 6 min 58 s acquisition time) without
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intravenous contrast administration for anatomical co-
registration. Using DICOM standards, the 3D dataset was
then transferred to the nTMS system.

Navigated transcranial magnetic stimulation

At each mapping session, the subjects underwent the
same procedure for mapping of the hotspot as described
in earlier reports [3,5]. In short, the used nTMS system
(eXimia 4.3, Nexstim, Helsinki, Finland) includes a mag-
netic stimulator with a biphasic figure-of-eight TMS coil
with a radius of 50 mm. The navigation device (Polaris
Spectra, Waterloo, Ontario, Canada) orients individual
3D MR images to the patient’s head by infrared tracking
using spheres coated with retro-reflective surface. The
used nTMS system estimates the induced electric field
strength with regard to the patient’s head shape and then
visualizes this electric field strength on the cortical sur-
face, which is reconstructed by the MRI dataset [8,9].
While stimulating with nTMS, electromyography (EMG)
(eXimia 4.3, Nexstim, Helsinki, Finland) is triggered by
nTMS stimuli and monitored continuously. EMG was
recorded over the skin of the APB by pregelled disposable
Ag/AgCl electrodes (Neuroline 720, Ambu, Bad Nauheim,
Germany) and the reference electrode was placed at the
ipsilateral elbow above the tendon of the biceps muscle.
The sampling rate was 3 kHz; resolution was 0.3 pV.
Noise of the device was lower than 5 pV for peak-to-peak
measurements. While applying stimulation over the left-
hemispheric motor cortex, motor evoked potentials (MEP)
of the right APB were measured by EMG. The subjects
were told to focus on the EMG to relax their muscles.
Thus, we achieved a highly comparable alertnes.

The stimulation intensity was adjusted that the EMG
response was between 100 and 600 pV. We detected the
most excitable site in the anatomically defined hand knob
[10] that elicited the maximum MEP response, com-
monly defined as the “hotspot” which means that this is
the point with the highest MEP amplitude for the right
APB after single pulse nTMS. The coil was positioned
perpendicular to the course of the central sulcus. For the
hotspot determination between 15 and 57 stimuli were
administered (Table 1). Afterwards, we performed the in-
dividual RMT determination, which was defined as the
lowest stimulation intensity that evokes a response in the
relaxed APB muscle of more than 50 pV of amplitude in
5 out of 10 stimulations. This protocol was used in all
subjects.

Data export and measurement

The detected hotspots were then exported via DICOM
standards and imported to the iPlan Net (BrainLAB AG,
Feldkirchen, Germany). Image fusion of the three corre-
sponding maps was performed with each subject’s MRI
data. We then determined the distances between the
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Table 1 Mapping characteristics
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1st mapping

2nd mapping 3rd mapping p

33 (15to 57)
38.5% (26% to 47%)

Median number of stimuli (range)
Median RMT (% Output) (range)

35 (17 to 56)
38.0% (26% to 44%)

36.5 (19 to 45) 0.9919
38.0% (24% to 44%) 0.781

This table shows the mapping characteristics of all subjects and stimulation parameters used in the study. RMT = resting motor threshold (stimulator output).

hotspots of each mapping in all 3 axes (i.e., x-, y-, and
z-axes) (Figure 1).

Statistical analysis

The distribution of continuous data is summarized by
mean + standard deviation (SD) and presented by boxplots.
Comparisons of intra- and interobserver distances are
performed by paired-samples t-tests. The variability of
the different mappings was evaluated and visualized by
a Bland-Altman plot [1]. When regarding the hotspot dis-
tances between the different measurements, not only
mean + SD but also limits of agreement (LOA) (= mean +
1.96 x SD) were calculated which represent the 95% likely
range for the difference between two measurements.
Moreover, to calculate concordance of the RMT, Lin’s con-
cordance correlation coefficient (CCC) as well as its 95%
confidence interval (95% CI) was calculated. Concerning
RMT, differences between groups were tested by the
Kruskall-Wallis test for nonparametric one-way analysis of
variance (ANOVA) followed by Dunn’s test as the post hoc
test. All statistical tests were conducted in an explorative
manner on a two-sided 5% significance level.

Results

nTMS parameters

During the initial mapping, the median RMT for the left
hemisphere was defined as 38.5% (range 26.0% to 47.0%)
of the maximal output. The second mapping (i.e., first
remapping) was conducted with a left-hemispheric RMT
of 38.0% (range 26.0% to 44.0%) of the system’s output.
During the third mapping (i.e., second remapping), the
RMT for the left hemisphere was determined as 38.0%
(range 24.0% to 44.0%) of the maximal output (Table 1).

Intraobserver variability

Intraobserver hotspot distances were defined as the dif-
ference between the initial and the second mapping (i.e.,
first remapping). The mean difference of x-coordinates
(medio-lateral direction) was measured as 1.9 + 3.4 mm
(LOA -4.7 to 8.5), whereas the mean difference be-
tween y-coordinates (cranio-caudal direction) was -4.8 £
34 mm (LOA -11.4 to 1.9; Figure 2). Additionally, the
resulting distance between both hotspots was measured
as —-1.5+54 mm (LOA -12.2 to 9.1) for the z-coordinate
(anterior-posterior direction). Taking into account not only

3D View

used coordinate system.

Figure 1 This figure shows an example of the measurement for hotspot distances. The yellow line indicates the distance between the
white and red spots and, therefore, shows the interobserver hotspot distance in mm (green spot = hotspot first mapping; white spot = hotspot
second mapping/first remapping; red spot = hotspot third mapping/second remapping). The left upper quadrant shows the orientation of the
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Figure 2 The boxplot shows intraobserver (left side) and interobserver (right side) distances for x-, y-, z-, as well as for x-z- and
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one direction, the mean distance between x- and z-
coordinates—that is, the distance in the same cortical
depth (combined x- and z-axis)—was 5.7 +3.3 mm
(LOA -0.7 to 12.2; Figures 2 and 3). The mean three-
dimensional distance (all axes) between hotspots was 8.1 +
3.3 mm (LOA 1.7 to 14.6; Figure 2). Concerning RMT,
CCC was 0.725 (95% CI: 0.276; 0.914) (Figure 4).

Interobserver variability

Interobserver hotspot distances were defined as the dis-
tance between the second mapping (i.e., first remapping)
and the third mapping (i.e., second remapping), which
was performed by a different examiner, as mentioned
above. Focusing on x-coordinates (medio-lateral direction),
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Figure 3 This figure illustrates the spread of intraobserver
(y-axis) and interobserver (x-axis) distances of the hotspots
in one peeling depth (x-z-coordinates; p=0.010).

the hotspot distances were measured to be -3.3 + 5.0 mm
(LOA -13.1 to 6.5), whereas the distance between y-
coordinates (cranio-caudal direction) was -3.2 +3.2 mm
(LOA -9.6 to 3.1). Additionally, the distance between
hotspots was measured to be 5.4+ 6.1 mm (LOA -6.5 to
17.3) for the z-coordinate (anterior-posterior direction).
For the interobserver comparison, the mean hotspot dis-
tance in the same peeling depth (combined x- and z-axis)
was 9.2 + 3.3 mm (LOA 2.7 to 15.8; Figures 2 and 3). The
interobserver distance of all combined axes was 10.3 +
3.3 mm (LOA 3.8 to 16.7; Figure 2). When evaluating the
RMT, CCC was 0.709 (95% CI: 0.244; 0.909) (Figure 4).

Comparison of the measured intra- and interobserver
distances

Table 1 shows the properties of the three mappings. In
all categories, differences were observed to be not signifi-
cant. Considering the intra- and interobserver distances
between y-coordinates and the three dimensional dis-
tances (all axes), we were not able to show any significant
differences (y-coordinates: p =0.294, all axes: p = 0.156;
Figure 2). In contrast, comparing the intra- and inter-
observer distances with regard to x- and z-coordinates
and to the hotspot distances in the same peeling depth
(combined x- and z-axes), we observed statistically signifi-
cant large interobserver distances (x-coordinates: p = 0.015;
z-coordinates: p = 0.023, combined x- and z-axes: p = 0.010;
Figures 2 and 3).

Discussion
RMT determination at the hotspot of small hand muscles
is considered a measure for motor cortex excitability. Thus,
variability of the hotspot plays an important role for nTMS,
both in motor and in language mapping, because it deter-
mines the accuracy of nTMS investigations.

In this study, still considering the low sample size,
intraobserver comparison showed a higher precision than
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Figure 4 Variability of the RMT of the different mappings evaluated and visualized by a Bland-Altman plot for intraobserver (left side)
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interobserver investigations in motor mapping of the
hotspot for the APB (Figures 2 and 3). This difference is
statistically significant when comparing the measured dis-
tances of both samples with regard to x- and z-coordinates
and to the hotspot distances in the same peeling depth. In
contrast, considering variations in distances between y-
coordinates and between all axes, we were not able to show
statistically significant differences (Figure 2). This corre-
lates well with the fact that the peeling depth is adjusted by
varying the y-coordinates. It can be modified several milli-
meters without having a crucial effect on the mapping pro-
cedure; thus, its setting can vary within a small range
(Figure 2). Yet, we have to keep in mind that the small
sample size still minors the power of statistical tests and
therefore judgment of our findings.

However, we have to question why interobserver vari-
ability is larger than intraobserver variability. Previous
studies have shown that there are individual differences
among humans concerning not only hotspot localization
but also hotspot shapes [11]. Unfortunately, we still do
not know much about interindividual variations in meas-
urement of hotspot size.

However, Pascual-Leone, Wassermann et al. (1995)
found that the size of the motor areas in the brain for the
hand muscles are able to enlarge significantly after only
hours of intensive use. Thus, the timing can play an im-
portant role in plasticity investigations, especially when the
enrolled subjects of our study are university students who
have greater than average use of the right hand.

We also compared the RMTs of all three sessions.
Previous studies have shown that the value of the indi-
vidual motor threshold varies [12]. In our findings, the

maximum individual fluctuation was 9% of the total
output. Nevertheless, on average, the determined RMTs
were almost stable and there was only minimal vari-
ation from mapping to mapping (Table 1, Figure 4). As
mentioned above, no subject was under any kind of medi-
cation. Moreover, special attention was paid on comparable
alertness during all mappings.

There already exist several studies on mainly non-
navigated TMS that deal with reliability in hotspot deter-
mination [6,13-18]. Wolf et al. [19], for example, achieved
a distance of 8.9 mm between two sessions with a range
from 0 to 22.4 mm. They used the hotspot of the extensor
digitorum communis muscle instead of the APB. Never-
theless, comparison among these studies is only possible
to a certain extent because previous investigations were
conducted using a different muscle, a different navigation
system, or non-navigated TMS.

The most important error source in non-navigated
TMS is inexact coil positioning because minor move-
ments of the coil or modifications of the angle can cause
significant deviations in field strength and stimulus loca-
tion [20]. With the development of n'TMS, we are able
to reduce this major error source, and respectable accur-
acy can be attained [8,21]. Yet, the nTMS system is com-
posed of several specific units, such as MRI-registration,
infrared camera system, stimulation coil, induced E-field
calculation, head shape, head tracker, etc., which all add
minor inaccuracies to the calculated overall error of the
used system. Thus, the accuracy of the system depends
on the accuracy and the interaction of such principal
factors. As Ruohonen and Karhu (2010) described in de-
tail, the E-field computation model causes the highest
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inaccuracy (3.8 mm) in the system, followed by shifting
of the head tracker (3.1 mm), and imperfect alignment
between anatomical MR images and the individual’s
head (2.5 mm) [21]. The localization of the coil consti-
tutes only 1.6 mm deviation.

In the end, the median overall error of the whole system
was calculated to be 5.73 mm [21]. The mean distance of
all combined axes was 8.1 mm in our intraobserver investi-
gations and 10.3 mm in our interobserver comparisons.
Taking into account that the calculated system error im-
pairs both measurements, the inaccuracy of the whole sys-
tem can increase up to 1146 mm (2 x 5.73 mm) in the
three-dimensional space. Both the mean intra- and the
interobserver distances were within this 11.46 mm value,
which means, on the one hand, that the two compared
hotspots might actually be located at exactly the same spot,
although we measured a distance of several millimeters.
On the other hand, the smallest determined distance of
3.0 mm could be much larger in reality.

Conclusions

In other words, our results are within the calculated error
of the whole system, and reproducibility seems to be in-
dependent of the examiner, at least concerning the nTMS
system used in this study. With regard to our findings,
we can therefore state that the intraobserver and the inter-
observer hotspot distances show sufficient reliability within
the system’s accuracy for neurosurgical applications.
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