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Using numerical simulations and analytical calculations,
we have recently demonstrated that, thanks to the phy-
siological learning mechanism referred to as Spike Tim-
ing-Dependent Plasticity (STDP), neurons can detect
and learn repeating spike patterns, in an unsupervised
manner, even when those patterns are embedded in
noise[1-3] - a computationally difficult problem. Here,
we show that the learning rule is optimal, in that it
maximizes the response to the patterns, while minimiz-
ing the mean response to noise. Therefore, by threshold-
ing the response, one can at the same time maximize
the hit rate, and minimize the false alarm rate.
More formally, if one considers a linear neuron, with

n excitatory afferents, with synaptic weights w1 ... wn in
0[1], and one input spike pattern, the goal is to find a
set of synaptic weights that maximizes the neuron’s
response to the pattern, while minimizing the mean
response to Poisson input noise. We first show that, to
find the optimal set, one should convolve the input
spike pattern with the excitatory postsynaptic potential
(EPSP) response kernel, and select the highest resulting
peaks. For each peak p, only a subset of the afferents np
contributed significantly to the response. One should
select the highest peak with minimal np, choose w = 1
for the contributing afferents, and w = 0 for all the
others (in order to minimize the mean response to Pois-
son noise). Then, we investigate the conditions under
which STDP indeed reaches this optimum, using analy-
tical calculations with a linear inhomogeneous Poisson
model[3,4], as well as simulations with both leaky-inte-
grate-and-fire (LIF) and Poisson neurons.
Our results indicate that, in a number of cases, STDP

indeed reaches this optimum, especially when coupled

with homeostatic mechanisms. In other words, when
faced with one repeating pattern to learn, STDP tends
to chose the best “signature” of this pattern, that is a
time window with as many (nearly) coincident spikes as
possible from as few afferents as possible, and concen-
trates weights on these afferents only, thereby minimiz-
ing the probability of strong responses due to fortuitous
spike coincidences. When faced with multiple repeating
patterns, the ones with best signatures tend to be
learned in priority.
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