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Abstract

Background: Micro-Electrode Array (MEA) technology allows researchers to perform long-term non-invasive
neuronal recordings in-vitro while actively interacting with the cultured neurons. Despite numerous studies carried
out using MEAs, many functional, chemical and structural mechanisms of how dissociated cortical neurons develop
and respond to external stimuli are not yet well understood because of the lack of quantitative studies that assess
how their development can be affected by chronic external stimulation.

Methods: To investigate network changes, we analyzed a large MEA data set composed of neuron spikes recorded
from cultures of dissociated rat cortical neurons plated on MEA dishes with 59 recording electrodes each. Neural
network activity was recorded during the first five weeks of each culture’s in-vitro development. Stimulation sessions
were delivered to each of the 59 electrodes. The False Discovery Rate technique was used to quantify the temporal
evolution of dissociated cortical neurons. Our analysis focused on network responses that occurred within selected
time window durations, namely 50 ms, 100 ms and 150 ms after stimulus onset.

Results: Our results show an evolution in dissociated cortical neuronal network activity over time, that reflects the
network synaptic evolution. Furthermore, we tested the sensitivity of our technique to different observation time
windows and found that varying the time windows, allows us to capture different dynamics of the observed
responses. In addition, when selecting a 150 ms observation time window, our findings indicate that cultures
dissociated from the same brain tissue display trends in their temporal evolution that are more similar than those
obtained from different brains.

Conclusion: Our results emphasize that the FDR technique can be implemented without the need to make any
particular assumptions about the data a priori. The proposed technique was able to capture the well-known
dissociated cortical neuron networks’ temporal evolution, that has been previously observed in in-vivo and in intact
brain tissue studies. Furthermore, our findings suggest that the time window that is used to capture the
stimulus-evoked network responses is a critical parameter to analyze the electrical behavioral and temporal evolution
of dissociated cortical neurons.

Background
Culturing dissociated cortical neurons on Micro-
Electrode Array (MEA) dishes is a powerful experimental
tool for investigating functional and structural character-
istics of in-vitro neuronal networks. Over the past few
decades, MEAs have been frequently used to investigate
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the mechanisms that take place at the network level
among cultured neurons and to answer fundamental
questions regarding the cellular basis of learning, memory
and synaptic developmental plasticity [1]. MEAs allow
researchers to carry out long-term (up to a few months)
non-invasive neural recordings using experimental setups
that are easier to control and less complex than similar
in-vivo systems. In general, MEA research falls in one
of two categories: hybrid systems, in which artificial and
natural intelligence are combined and biologically derived
brain models that can be used to investigate how the
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brain works and how it forms structural and functional
connections.

Closed-loop experiments
MEA technology is often used to perform real-time exper-
iments, also called closed-loop experiments, in which
a feedback loop is implemented by delivering electrical
stimuli to the electrodes while simultaneously recording
from them. Electrical stimulation allows researchers to
modulate neural activity in real-time in order to induce
network plasticity or to simulate the effects of sensory
input [2-5]. In [4,6-9] the authors investigated how to
use electrical stimulation to evoke and modulate neural
responses. For example, in [8] the authors demonstrated
selective learning in a network of real cortical neu-
rons by implementing a closed-loop stimulation protocol
that allowed them to map evoked neuronal responses to
known stimuli. These responses were used to generate
learning curves that described how the repeated stimu-
lation protocols were inducing changes in the synaptic
connections of the neuronal network.
From this perspective, MEA technology can be used to

investigate how living neurons could interact with arti-
ficial systems with the goal of building hybrid systems
where artificial and natural intelligence coexist. These
hybrid systems could also be used to simulate and study
different pathological situations or neurological disorders,
such as epilepsy and stroke [10]. For instance, MEA tech-
nology can be potentially used to investigate brain struc-
tures at the network level and to study the causes for most
brain disorders such as Parkinson’s disease, Alzheimer’s
and neuropathic pain.

Brain modeling
Since the first studies of Ramón y Cajal [11] dating back
over a century ago, researchers have been interested in
investigating how neurons are physically connected in our
nervous system and what these connections mean from
a functional neuronal network perspective. To date, we
know that functional connectivity modulates cognitive
and behavioral states in the brain, but very little is known
about functional networks and complex neuronal ensem-
bles involving overlapping or multiple anatomical struc-
tures [12,13]. One limiting factor of this line of research
is related to the fact that most studies require the use of
expensive and ad-hoc imaging tools such special MRI sys-
tems combined with tightly controlled experiments and
powerful image processing techniques [13].
In contrast, MEA recordings represent an innovative

tool to build a simplified and yet realistic neuronal model
able to simulate the functions and properties of brain
layers [9]. Starting from simple brain layer models we
can then increase the system complexity, trying to com-
bine multiple layers and eventually building 3-D neuronal

structures. Furthermore, MEA systems give researchers
a greater flexibility in changing and readapting experi-
mental setups as compared to the kinds of experiments
that are currently used to draw maps of human functional
connections [13].
Despite the innovative approaches and findings of the

aforementioned studies, neuronal functional plasticity
related to electrical stimulation (e.g. what happens when
stimulating a neuronal culture during different phases of
its in-vitro development) still needs to be fully investi-
gated. For instance, very little is known about: (1) how
a culture reacts if stimulated at different stages of devel-
opment; (2) what are the mechanisms that allow such
cultures to consistently respond to stimulation; (3) how
important stimulation delivery is during early develop-
mental stages; and (4) what are the real effects of stim-
ulation on cultures stimulated repeatedly over time as
compared to “never-stimulated” control cultures.
Even though some studies have investigated sponta-

neous electrical activity in dissociated cultures [14-17],
many questions still need to be addressed before we can
integrate these neuronal networks into larger and more
complex systems. For instance, to our knowledge, there
are no quantitative studies that assess how the develop-
ment of dissociated rat cortical neurons can be affected by
chronic external stimulation [3].

Quantitative analysis of network activity and its temporal
evolution
In this work, we aim to address two major limitations
of the aforementioned research fields. Firstly, although
hybrid neural-electrical circuits have been demonstrated,
their functionality is inherently limited when the neu-
ronal network is treated as a black box. An understanding
of how those networks evolve with respect to specific
stimuli (or lack thereof) will necessarily lead to hybrid sys-
tems with greater functionality and robustness. Our long-
term goal is to understand how these systems respond to
external stimulation, [18] how and why they vary their
electrical activity over time [19,20].
Secondly, there is a lack of adequate statistical tools

for processing and quantifying large spike-based data sets
[21]. This deficit hinders investigators’ ability to identify
significant changes in network connectivity amid popu-
lations of weakly tuned neurons with high spontaneous
activity. As a result, the ultimate goal of exploring the
relationship between neural circuit topology and behavior
is compromised. Existing tools such as activity task neu-
roimaging are insufficiently sensitive both temporally and
spatially [21].
Although various approaches have been presented for

analyzing spike behavior in MEA recordings, these meth-
ods have tended to focus on raw statistical correla-
tions without necessarily yieldingmeaningful insights into
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physiological network topology. In [22] the authors use
Hidden Markov Models (HMMs) to estimate the number
of states the neurons in the network can have. The authors
assumed that neuronal networks only adopt three differ-
ent firing patterns. This simplification was necessary to
implement the HHM technique, but at the same time such
an approach fails to capture the high variability and variety
of neuronal network electrical responses.
Others [23] have proposed to use dynamic Bayesian net-

works to discover excitatory relationships inMEA record-
ings. In this work the authors were testing a computer
algorithm capable of emphasizing the excitatory statis-
tical connections in discrete-time networks. Their main
assumption is that in the network only excitatory con-
nections are important, while inhibitory connections are
neglected. With respect to neuronal networks, such an
assumption cannot be considered valid, thus their math-
ematical approach cannot capture the full complexity of
live neuron interactions.
In both of these studies, the authors realize the

importance of applying statistical techniques to identify
sequences of firing neurons and find the functional net-
work connectivity. However, despite the recognition of the
relevance of statistical methods, there is a lack of liter-
ature investigating the physiological aspects of neuronal
development [13,24].
We propose to use a well-known statistical technique,

that has been proven successful in separating the non-null
cases from the null cases in multiple hypothesis test-
ing. For the first time, we aim to statistically quantify
the temporal dynamics of dissociated cultured neuronal
networks, without simplifying the underlying biological
model. In this work, our goal was to address the above-
mentioned issues by applying the False Discovery Rate
(FDR) statistical analysis technique to MEA recordings
and using its results to quantify biological and electro-
physiological properties of dissociated neuronal networks
during their first five weeks in-vitro. FDR identifies sig-
nificant stimulus-response pairs among the numerous
spontaneous spikes from the cultured neurons. Moreover,
the FDR technique has been proven to be a valuable tool
to overcome the traditional issues in multiple hypothe-
ses testing problems, namely controlling the probability of
erroneously rejecting even one of the true null hypotheses,
otherwise known as the familywise error-rate (FWE) [25].
This allowed us to investigate the temporal evolution of
cultured neural networks while presented with electrical
stimulation during early development.

Methods
The statistical analyses presented here were performed on
neural spike data made available by Dr. Steve Potter in
the Laboratory for Neuroengineering at Georgia Institute
of Technology and Emory University School of Medicine.

They comprise a series of MEA recordings from cultures
of dissociated rat cortical neurons with bursting activity
patterns, recorded over the first five weeks of their in-vitro
development. Details of the cell culture methodology and
electrophysiology can be found in [14].
To investigate network changes, we analyzed a large

MEA data set composed of neuron spikes recorded from
cultures of dissociated rat cortical neurons plated onMEA
dishes with 59 recording electrodes each. There were 15
high-density high-volume (“dense”) cultures, as well as
7 high-density small-volume (“small”) and 6 low-density
high-volume (“sparse”) ones. The culture density was cho-
sen when plating the dissociated cortical neurons onto the
MEAs, as described in [14]. Further details on different
plating densities can be found in Table 1. Some neuron
cultures were dissociated from the same original brain tis-
sue; such cultures were defined as belonging to the same
“batch” of brain tissue. The number of neuronal cultures
dissociated from each batch is shown in Table 1.
Neural network activity was recorded during the first

five weeks of each culture’s in-vitro development. During
this period, stimulation sessions (typically occurring daily)
comprised of 50 electrical stimulus pulses were delivered
to each of the 59 electrodes. These stimuli were delivered
sequentially to every electrode on the MEA, once every
300 ms, while neural responses were recorded from all
the other electrodes. Although it is well-known that neu-
ronal network responses elicited during such stimulation
sessions are complex and may last longer than 300 ms
[26,27], we focused on network responses that occurred
within selected time window durations, namely 50 ms,
100 ms and 150 ms after stimulus onset. This allowed
us to account for three specific components of network
responses known as 1) the network “direct responses” to
stimulation, that are those occurring between 0 and 20 ms
after stimulus (50ms windows); 2) the “early post-synaptic
spikes”, occurring 5–1000 ms after stimulus presentation
(100 ms windows); 3) “Culture-wide barrages”, occurring
at latencies greater than 100 ms (150 ms windows). These
responses are thought to be the most representative of the
stimulation effects [6-8,16,28,29].

Table 1 Different neuronal cultures

DENSE SMALL SPARSE

Plating volume (μL) 20 5 20

Density of suspension (cells/μL) 2500 2500 625

Nominal number of plated cells 50000 12500 12500

Number of studied cultures 15 7 6

Number of studied batches 6 2 2

To notice how the plating volume and density of suspension for dense and
sparse cultures are the same, but they have a different number of plated cells.
Small cultures have the same density of suspension as dense cultures, but the
number of plated cells is the same as sparse cultures.
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The stimulus-evoked spike count was normalized by
subtracting the average spontaneous spike count aver-
aged over the chosen time window. The spontaneous
spikes were recorded on the same experimental day as
the stimulus-evoked spikes, from the same neural net-
work. This technique allowed us to account for the nat-
ural variability in neuron firing activity that occurs as a
result of axonal growth and network changes over time.
The same stimulation protocol was delivered to every
culture [14].
Each culture yielded a 59 × 59 × 50 data matrix (stim-

ulated electrodes × recording electrodes × number of
trials) of normalized spike counts on each day. We then
averaged across trials to produce a 59 × 59 matrix of
stimulus-response pairs (Zkj) per day per culture. These
matrices were then interpreted for statistical significance
(see Section “Statistical analysis”). Only those stimulus-
response pairs determined to be statistically significant
were used in the subsequent quantitative connectivity
analysis.
In order to be able to quantify changes in the connec-

tivity graphs with respect to time, we used two measures
per experimental day: the average length of significant
pairwise stimulus-response connections and the number
of connections that every node displays. The former is
a measure of how physically far the neurons can extend
their connectivity pathways. The latter is a measure of
how many significant connections every node can either
generate or receive. In other words, this is a measure of
how many significant hubs the network displays on any
specific experimental day. We defined “supernodes” to
be those nodes that display at least four significant con-
nections, either incoming or outgoing. The existence of
supernodes is consistent with the notion that biological
networks tend to form ‘small-world’ networks, as previ-
ously showed in [30]. It is worth noting that theMEA elec-
trode grid used in this work is directly connected to the
underlying neuron network. However, given the limited
number of electrodes and their size and spacing, this elec-
trode grid cannot capture the full extent and complexity of
the actual neuron connectivity. Consequently, every elec-
trode (or node) is actually simultaneously recording from
(and stimulating) multiple neurons (ranging from tens
to hundreds). Considering the high neuronal connectiv-
ity, a single stimulus pulse is therefore potentially able to
induce stimulus-evoked responses across the whole net-
work either directly or through one or more synapses. As
a result, when we identify connections and connectivity
graphs, we are actually measuring connections between
electrodes (nodes) and not single cells. Although it is not
easy to quantify the exact number of neurons involved, it
is reasonable to assume that each supernode connection
comprises a number of main neurons ranging between 80
and 200.

Statistical analysis
In order to identify statistically significant stimulus-
response pairs, we implemented the False Discovery Rate
(FDR) analysis technique. The FDR technique is amultiple
hypothesis testing procedure whose objective is to con-
trol the expected proportion of incorrectly rejected null
hypotheses, as shown by Equation 1.We chose to use FDR
because it has been proven to be effective when testing
multiple hypotheses [31] in high dimensionality data sets.
In our case the null hypothesis is that a given stimulus-
response pair is not statistically significant.We applied the
FDR to the average number of evoked spikes relative to the
average number of spikes recorded when no stimulation
was delivered, (Zkj) as shown in Figure 1.

Statistical significance test: FDR
The False Discovery Rate is defined as:

FDR = E
[
V
R

]
(1)

where:

- V is the number of false discoveries
- R is the total number of discoveries

FDR procedures are designed to control the expected
proportion of incorrectly rejected null hypotheses, also
called false discoveries V. In this work we chose FDR = 5%.
The null hypothesis was defined as: H{0,kj} : While stim-
ulating electrode k, electrode j does not respond.
Therefore, the FDR guarantees that no more than 5%

of the stimulus-response pairs identified as being signifi-
cant will actually be insignificant. The FDR was applied to
each of the 59 × 59 elements of the matrix Zkj (stimulus-
response activity pairs, normalized by the network spon-
taneous activity) recorded for every experimental session
and for every culture. The implemented mathematical
analysis is shown in Figure 1.
Mathematically, the FDR technique defines the two

hypotheses as follows:

H{0, kj} : Zkj ∼ N(μ0 = 0, σ 2) = f0(Zkj)

H{1, kj} : Zkj ∼ f1(Zkj)
(2)

The statistic Tkj, referred to as “local FDR” is then
defined as:

Tkj = (1 − ε)f0(Zkj)

εf1(Zkj) + (1 − ε)f0Zkj
= (1 − ε)f0(Zkj)

f (Zkj)
(3)

In other words, the local FDR function quantifies the
relative likelihood of H0; values of Tkj close to 1 indi-
cate a high likelihood of H0 whereas values closer to 0
indicate a low likelihood. The local FDR function is a
measure of how similar the two distributions f0(Zkj) and
f (Zkj) are, where f0(Zkj) is the null distribution density
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Figure 1 Block Diagram of the implemented neuronal spike statistical analysis. The raw neural spikes are divided into two groups, evoked
activity and spontaneous activity, respectively stimulated and non-stimulated experimental sessions. Then the raw spikes were divided into time
windows and averaged across repetitions. The average spontaneous activity was subtracted from the average evoked activity and fed into the False
discovery Rate (FDR) statistical analysis technique. The output of the FDR is the significant stimulus-response pairs. Using these significant pairs we
computed their average connection lengths and the number of supernodes.

function and f (Zkj) is the alternative distribution function
[31]. The parameter ε is called the non-null proportion
[25,31] and represents the number of expected significant
stimulus-response pairs. In our analysis we expect ε to
always assume small values because we expect the number
of significant connections to be lower than the number of
possible pairwise connections in the network. The value
of the parameter ε is estimated from the data before com-
puting the local FDR functions [25]. If Tkj is close to
1, then the two distributions defined in the hypotheses
are similar and the null hypothesis is selected. This indi-
cates no significant relation between the stimulus, deliv-
ered to electrode k, and the neural response recorded at
electrode j.
Next, the 59 × 59Tkj’s are ranked from the smallest to

the largest. The ordered local FDR functions are called
T1, . . . ,Tp where p = 59 × 59. Significant local FDR
functions are therefore Ti, for i ≤ k, such that:

k = max

⎛
⎜⎜⎜⎝I :

k∑
I=1

TI

k

⎞
⎟⎟⎟⎠ ≤ FDR (4)

This technique therefore guarantees that the average
false positive rate over all significant stimulus-response
pairs will be less than 5%.

Results
Figure 2 shows typical connectivity graphs for two dif-
ferent cultures harvested from different brain tissues, on

three separate days. Each red arrow indicates a statistically
significant connection between a stimulated electrode and
a recording one, as identified by the FDR analysis. Figure 2
suggests that neuronal connectivity tends to evolve over
time, with increases in both the number of statistically
significant stimulus/recording pairs as well as the average
length of connections and the number of connections per
active node.
In order to better analyze the changes in electrical activ-

ity versus time (and among different plating densities and
neuron batches), we averaged the connection lengths and
the supernode counts across cultures harvested from the
same batch. The resulting graphs are shown in Figures 3,
4 and 5, where average connection distances, average
incoming supernode count and outgoing supernode count
are shown respectively for dense, small and sparse cul-
tures when a 150 ms time window was chosen to record
network activity. For every cell density, the number of cul-
tures that we used to compute the average within batches
is different and it is indicated in the figures with n. Due
to the fact that recordings were not performed every day,
we used a dotted blue line to indicate missing experi-
mental days while a solid black line was used to plot the
actual data sample means. The red error bars indicate the
standard errors obtained when averaging cultures derived
from the same batch. From these graphs, it is notice-
able how the average connectivity pair lengths increase
over time, then reach a plateau, following the expected
network temporal evolution. Moreover, this behavior is
observed to be consistent across cultures of different den-
sities and across different time window durations (data
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Figure 2 Connectivity Graphs for dense neuronal cultures on different days after plating. The top Panel shows connectivity graphs for
culture 1-1, on days in-vitro (div) 10, 14 and 25. The bottom panel shows results for culture 3-1, on days in-vitro 11, 21 and 25.

not shown). An increase in average connection length
means that stimulus-evoked responses are recorded from
electrodes that are physically further from the stimu-
lated electrode; evoked electrical activity is propagated
more easily in the dish and over longer distances. The

functional evolution in the studied neuronal networks
reflect the natural temporal evolution of neural circuit for-
mation. In fact, neural circuit formation occurs in three
distinct stages: 1) Immature synapses form between axons
and dendrites. 2) Synapses undergo maturation, which
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involves the conversion of silent synapses to active ones.
3) Excess synapses are eliminated or pruned to refine the
neuronal connections within the circuit [10].
Figures 3, 4 and 5 reveal consistent neural develop-

ment within batches, with more variable trends across
batches. To quantify this, we ran one-way ANOVA tests
on both connection lengths and number of supernodes
within and across batches. Our results with respect to
50 ms and 150 ms windows suggest that the connec-
tion length variability within batches is not statistically
significant (p ≥ 0.05). On the contrary, cross-batch vari-
ability was statistically significant for connection lengths
(p values for 50 ms and 150 ms windows were respec-
tively p50 = 0.0207 and p150 = 0.0107). No significant
variations were observed in both incoming (p50 = 0.357
and p150 = 0.204) and outgoing (p50 = 0.295 and
p150 = 0.992) supernode counts. In contrast, variations
observed within and across batches for a 100 ms observa-
tion window tested non-significant with p values for mean
connection lengths, mean incoming and outgoing supern-
odes respectively equal to plength = 0.673, pincoming =
0.357 and poutgoing = 0.295. We hypothesize that the
observed variability in the analysis results is mainly due
to the fact that when using different time window dura-
tions, one might or might not include in the analysis some
of the phases of the network stimulus-evoked responses.
In this view, our statistical analysis emphasizes the impor-
tance of the time window length selection and that com-
mon values that have been commonly utilized in previous
works, such as 100 ms windows, might not yield optimal
results.
Furthermore, we tested the effects that different time

windows had on the analysis results and whether the time
window related changes were statistically significant. So
we performed a one-way ANOVA test on the average
connection lengths computed for the six dense batches
in each time window. Then we performed an ANOVA
multiple comparison test to identify which group means
were statistically different from each other. The results
of the multiple comparison test are shown in Figure 6,
in which, the three group means and their 95% confi-
dence intervals for every dense batch are shown. In batch
1 and batch 3, there are group means significantly differ-
ent from the others. In batch 1 the second group mean
(100 ms window) is significantly different from the other
two group means, while in batch 3 is the third group
mean to be significantly different from the others. It can
be seen how differences between results generated using
different time windows are significant in batch 1, where
the 100 ms group mean is significantly different from the
other two (p = 7.051×10−4) and in batch 3 where 150 ms
group mean is significantly different (p = 8.126 × 10−6).
This implies that different time windows generate signif-
icantly different results in two batches out of six. On the

contrary, differences between the three group means are
non-significant for the remaining batches.

Discussion
This work has adapted a statistical technique for iden-
tifying significant neuronal connectivity between pairs
of electrodes in a micro-electrode array dish. This work
has furthermore developed two metrics for describing
connectivity in the MEA dish: (1) the average distance
between stimulus and recording electrodes, and (2) the
existence of “supernode” electrodes, which form func-
tional hubs connecting to a large number of other elec-
trodes. Finally, this work has used these metrics to
quantify connectivity trends in MEA cultures of dissoci-
ated rat cortical neurons, including culture preparations
characterized as “Dense”, “Sparse” and “Small”. In all
cases, the MEA dishes showed two phases of develop-
ment with respect to neuronal connectivity over a period
of about 40 days. The first phase was characterized by rel-
atively little significant neuronal connectivity within the
MEA dish, this phase typically lasted five days. The sec-
ond phase, lasting 10-15 days, is characterized by a rapid
growth in the sophistication of network connectivity, both
in terms of average connection length and number of
supernodes. At the end of the second phase, network
growth tends to plateau.
It is interesting to notice that towards the end of the

experiments (35 div) our statistical results show that the
number of significant connections begins to decrease in
some batches. This might be caused for several reasons
including changes in neuron density, glial cell proliferation
or the fact that the networks might become less sensitive
to stimulation over time.We observed that after 35 div the
spontaneous firing rate can start to decrease and stimulus
evoked responses decrease accordingly. This is in agree-
ment with what found in [14], where the authors found
that after one month in vitro, the network’s overall firing
rate was lower while its bursting activity increased.
Furthermore, our findings for 50 ms and 150 ms time

windows, suggest that the observed neuronal networks
display similar behavioral trends within neuron cultures
derived from the same brain tissue with non-significant
variations in their connection lengths. On the contrary,
temporal evolution seems to display statistically signifi-
cant differences when analyzing cultures harvested from
different brain tissues, as quantified by the ANOVA test
results (p value for 50 ms windows is p50 = 0.0207, and p
value for 100 ms windows is p150 = 0.0107).
Two plausible explanations can justify the observed

behaviors: 1) Cultures derived from the same brain tis-
sues were grown, fed and recorded from at the same
time and exposed to the same experimental conditions.
On the contrary, experimental conditions might have
been slightly different for cultures derived from different
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batches because they were grown during different periods
of time. In this view the different experimental condi-
tions could explain the high variability across batches.
2) Despite these neurons having been dissociated before
plating, they could still retain some innate characteris-
tics and properties originating from the brain tissue they
were derived from. While the former explanation is more
plausible, considering neuron sensitivity to experimen-
tal conditions. The latter is intriguing because it suggests
that dissociated neurons retain essential properties of the
original brain cortical tissue they were harvested from. If
so, then electrical activity may be determined by genetic
factors to a much larger extent than previously thought.
Further investigation is warranted.
In previous studies, the gold standard to quantify the

electrical activity of neuronal networks cultured on MEA
dishes was tomeasure the overall network activity by sum-
ming the number of spikes detected per unit time over all
electrodes [14]. Although this metric has proven benefi-
cial when assessing the total network activity or network
bursting activity, it is not specific or accurate enough to
quantify the networks’ temporal evolution. Furthermore,
given the randomness and variability associated with the
spontaneous activity of such networks, it also lacks the
statistical features that are valuable tominimize the effects
of randomness in MEA recording results. Our findings
suggest that FDR analysis is a valuable technique to inves-
tigate and quantify dissociated cortical networks’ tem-
poral evolution when combined with more physiological
metrics that can track changes in network activity.
One last consideration regarding the statistically signif-

icant connectivity graphs that are the results of the FDR

analysis. It is important to notice that the identified con-
nections are not necessarily direct connections between
two nodes, but they can hide intermediate hops and more
complex activity patterns. This issue gets even more com-
plex if we keep in mind that the electrode connections are
an overall and over-simplified representation of the neu-
ron network connectivity. Unfortunately, with this kind
of MEA dishes it is arduous to track the real neuronal
connections that underlie electrode activation.
Despite the results presented in this work, further stud-

ies will be necessary to understand the role of chronic
external stimulation in dissociated cortical neuron devel-
opment. Specifically, while this work identifies character-
istic phases ofMEA network development, it is not known
whether those changes are occurring spontaneously or in
response to the daily stimulation protocol. Further inves-
tigation is needed in which the neuronal connectivity of
unstimulated MEA arrays is compared to that of chron-
ically stimulated ones. Preliminary evidence [18] sug-
gests that electrical activity may shape network functional
properties.
Our findings are consistent with previous results in the

literature. For instance in [32], the authors have investi-
gated the presence and the importance of “brain hubs” in
functional brain organization. These brain hubs play a key
role in global information integration between different
parts of the brain connections.
In the future, we will develop this work by investigating

the specific role of electrical stimulation in regulating neu-
ronal development. Specifically, we will implement asso-
ciative learning protocols in MEA dishes such as those
described in [33]. Protocols will use two different sets
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of external electrical stimuli. The Unconditional Stimulus
(US) will be chosen from those stimuli that do not produce
any evoked network response, whereas the Conditional
Stimulus (CS) will be chosen from among those stimuli
that produce a distinctive network activity. By comparing
the network responses to the different stimuli and charac-
terizing their temporal evolution, we will be able to study
in greater detail the learning processes that take place
in dissociated cortical neurons. Furthermore, in order
to improve the significance of our analytical approach,
the methods introduced in this work could be applied
to synthetic data following the approach presented in
[34] and this will be the subject of a future study and
publication.

Conclusions
We studied how dissociated cortical neurons respond
to chronic electrical stimulation. In particular we inves-
tigated the temporal evolution of neuronal activity in
response to a constant electrical stimulation protocol over
the first 5 weeks of neuronal development. Our goal was
to quantify changes in neuronal network connectivity,
in dissociated cortical neurons using statistical analysis.
We hypothesized that both external stimuli and network
functional evolution were fundamental in neuronal devel-
opment as previously shown in the literature. In fact,
our results show an evolution in network activity in two
ways. Neuronal connectivity tends to evolve over time,
with changes in both the number of statistically signifi-
cant stimulus/recording pairs as well as the average length
of connections and the number of connections per active
node. We therefore propose that the FDR analysis com-
bined with two metrics, the average connection length
and the number of highly connected “supernodes” are
meaningful techniques for describing neuronal connec-
tivity in MEA dishes. Furthermore, our results indicate
that when analyzing stimulus-evoked responses recorded
within 50 ms and 150 ms time windows from stimu-
lus onset, cultures dissociated from the same brain tis-
sue display trends in their temporal evolution that are
more similar than those obtained with respect to differ-
ent batches, as quantified by the statistical tests within
and across batches. We suggest two hypotheses that could
help explain the observed phenomena: 1) Cultures derived
from the same brain tissues were cultured and exposed to
experiments in the same time periods and under very sim-
ilar experimental conditions, this could have induced the
similarities in the observed results. 2) Our findings could
indicate that even after dissociation, these neurons pre-
served some of the properties and characteristics of the
original brain tissue they were harvested from. This would
indicate that genetic information and genetic programs
control neural development and neural firing more than
previously hypothesized [19].
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