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A rich set of genetic tools and extensive anatomical data
make the olfactory system of the fruit fly a neural circuit
of choice for studying function in sensory systems.
Though a substantial amount of work has been pub-
lished on the neural coding of olfactory sensory neurons
(OSNs) of the fruit fly, yet little is known how projec-
tion neurons (PNs) encode time-varying odor stimuli
[1]. Here we address this question with in vivo experi-
ments coupled with a phenomenological characteriza-
tion of the spiking activity of PNs.
Recently, a new class of identification algorithms called

Channel Identification Machines (CIMs) [2] was proposed
for identifying dendritic processing in simple neural circuits
using conditional phase response curves (cPRCs) [3]. By
combining cPRCs with the reduced project-integrated-and-

fire neuron (PIF) model [4], the CIM algorithms identify a
complete phenomenological description of spike generation
of a biological neuron for weak to moderately strong sti-
muli. Moreover, the identification method employed does
not require white noise stimuli nor an infinitesimal pulse
injection protocol as widely used in the past [5].
Here we identify the PNs both in silico and in vivo.

Starting with simulations, we investigate the feasibility of
the CIM method on PNs modeled as pseudo uni-polar
neurons in silico, as shown in Figures 1.(B) and 1.(C). We
then systematically convert the CIM method into a step-
by-step experimental protocol, and carry it out in vivo by
injecting currents into PNs using the patch clamping
technique [6,7]. A snapshot of PN patching is depicted in
Figure 1.(A).
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Figure 1 (A) PN with GFP expression under 60x magnification; (B) Schematic of the anatomy of the PN; (C) Circuit diagram of the simulated PN
model; (D) Identified PRC of the simulated PN model; The injected current varies from 25 [pA] to 60 [pA] with step size 1 [pA]; (E) Identified PRC
of PN. The injected current varies from 30 [pA] to 50 [pA] with step size 5 [pA]; (F-J) Comparison between identified PRC of simulated PN model
and the in vivo PN; Injected current value is 30 [pA] to 50 [pA] with step size 5 [pA] from (F) to (J). Time is in seconds.
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We demonstrate that the CIM method accurately
identifies the cPRCs of the in silico PN model for a wide
range of bias currents, as shown in Figure 1.(D). More-
over, the new method also accurately identifies a set of
cPRCs of PNs in vivo, as shown in Figure 1.(E). For
comparison, we tune the identified cPRCs of the in silico
PN model to fit the in vivo identified cPRCs of biologi-
cal PNs. We demonstrate that: (i) the new method accu-
rately identifies the cPRCs of PNs for small bias
currents; (ii) the accuracy of the cPRC is qualitatively
lower during the refractory period, as depicted in
Figures 1.(F-J).
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