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Abstract

Background: We examine results of gain-of-function experiments on retinocollicular maps in
knock-in mice [Brown et al. (2000) Cell 102:77]. In wild-type mice the temporal-nasal axis of retina
is mapped to the rostral-caudal axis of superior colliculus. The established map is single-valued,
which implies that each point in retina maps to a unique termination zone in superior colliculus. In
homozygous IsI2/EphA3 knock-in mice the map is double-valued, which means that each point on
retina maps to two termination zones in superior colliculus. This is because about 50 percent of
cells in retina express Isl2, and two types of projections, wild-type and IsI2/EphA3 positive, form
two branches of the map. In heterozygous IsI2/EphA3 knock-ins the map is intermediate between
the homozygous and wild-type: it is single-valued in temporal and double-valued in the nasal parts
of retina. In this study we address possible reasons for such a bifurcation of the map.

Results: We study the map formation using stochastic model based on Markov chains. In our
model the map undergoes a series of reconstructions with probabilities dependent upon a set of
chemical cues. Our model suggests that the map in heterozygotes is single-valued in temporal
region of retina for two reasons. First, the inhomogeneous gradient of endogenous receptor in
retina makes the impact of exogenous receptor less significant in temporal retina. Second, the
gradient of ephrin in the corresponding region of superior colliculus is smaller, which reduces the
chemical signal-to-noise ratio. We predict that if gradient of ephrin is reduced by a genetic
manipulation, the single-valued region of the map should extend to a larger portion of temporal
retina, i.e. the point of transition between single-and doulble-valued maps should move to a more
nasal position in IsI2-EphA3 heterozygotes.

Conclusions: We present a theoretical model for retinocollicular map development, which can
account for intriguing behaviors observed in gain-of-function experiments by Brown et al., including
bifurcation in heterozygous Is|2/EphA3 knock-ins. The model is based on known chemical labels,
axonal repulsion/competition, and stochasticity. Possible mapping in Isl2/EphB knock-ins is also
discussed.

that two axons of retinal ganglion cells (RGCs), which

Background

Topographic ordering is an important feature of the visual
system, which is conserved among many visual areas [1].
Thus, the projection from retina to superior colliculus
(SC) is established in a way, which retains neighbour-
hood relationships between neurons [2-4]. This implies

originate from neighbouring points in retina, terminate
proximally in SC. It is assumed that this facilitates visual
processing, which involves wiring local to the termination
zone [5].
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The mechanisms responsible for topographic ordering
have been lately under thorough examination. Following
the original suggestion by Sperry [6], it was shown that
chemical labels play an essential role in formation of the
map (reviewed in [3,7]). For the projection from retina to
SC the Eph family of receptor tyrosine kinases and their
ligands ephrins were shown to be necessary for establish-
ing correct topographic maps [7-10]. The coordinate sys-
tem is encoded chemically in retina through graded
expression of the Eph receptors by the RGCs. Thus, in
mouse retina, two receptors of the family, EphA5 and A6,
are expressed in the low nasal - high temporal gradient
[11-14]. The recipient coordinate system in the SC is
established through high caudal - low rostral gradient of
ephrin-A2 and A5 ligands [15]. Since RGC axons express-
ing EphA receptors are repelled by high levels of ephrin-A
ligands this system of reciprocal gradients allows sorting
of the projecting axons in the order of increasing density
of receptors, whereby contributing to the formation of
topographic map [10,15,16] (Figure 1A). Thus, the system
of reciprocal gradients is involved in formation of topo-
graphic representation along the nasal-temporal axis,
albeit some additional fine-tuning is provided by activity-
dependent mechanisms [17-19].

In this study we address the results of gain-of-function
experiments, in which the retinocollicular maps were
modified by genetic manipulations [20]. RGCs of the
wild-type mouse express the LIM homeobox gene Islet2
(Is12) [21]. Retina of a single animal is composed of two
types of cells with regard to their expression of Isl2 gene,
Isl2+ and Isl2-, which are intermixed in roughly equal
proportion throughout the RGC layer (Figure 1B). To test
the mechanisms of the retinocollicular map formation
Brown et al. [20] generated "knock-in" mice, in which the
Isl2 and EphA3 genes are coexpressed. This implies that
each Isl2+ RGC and its axons, in addition to EphA5 and
A6, also expresses EphA3, not found in the wild-type
RGCs. The Isl2- cells remain EphA3-, as the wild-type
cells. By doing so Brown et al. [20] increased the total level
of EphA receptors in a given fraction of retinal cells. Since
the overall level of EphAs is increased in Isl2+/EphA3+
cells, axons of two neighboring cells, knock-in and wild-
type, should terminate in quite different places in SC (Fig-
ure 1B). The knock-in cells, interacting more strongly with
the repellent should terminate at the position of
decreased density of ephrins, i.e. more rostrally with
respect to the wild-type cells. The neighborhood relation-
ships between axons should be lost, the new map should
lose its continuous nature, and it should split into two
maps: one for wild-type RGCs, one for knock-in cells. This
prediction was confirmed by experiments of Brown et al.
[20] (Figure 2).
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Chemical labelling system in retinocollicular map in
mice A. Formation of the map in the wild-type mouse. Reti-
nal ganglion cells (RGC) express EphA5/6 receptors in tem-
poral > nasal gradient (bottom), whereas the cells in SC
express the ephrin-A ligands in caudal > rostral gradient
(top). Since axons of Eph+ RGC (red arrows) are repelled by
ephrins this distribution of chemical markers leads to estab-
lishing of ordered topographic map in which nasal/temporal
retina projects to caudal/rostral SC. This is because RGC
axons expressing highest levels of Eph receptors (temporal)
experience the largest repulsion and are expelled to the ros-
tral part of SC, where such repulsion is minimal. Axons of
nasal RGC are more indifferent to the action of ligands and
occupy more caudal positions. Such system allows position-
ing of RGC axons in the order of increasing expression level
of EphA receptors. B. Map in the mutant mouse from Ref.
[20]. The expression level of EphA receptors was artificially
increased in every second cell by genetic manipulations (dark
gray). This is done by co expressing EphA3, which is absent in
the wild-type RGCs (see A), with another gene, Isl2, which is
expressed roughly in 50% of RGC:s. Since ephrin ligands bind
and activate all receptors from EphA family, albeit with differ-
ent affinity, this results in anomalous projection to SC, based
roughly on the total levels of EphA in each axon. Similarly to
A this leads to sorting of axons in the order of increasing
density of EphAs (red arrows). Note that two RGC neigh-
boring in retina become separated in SC (bold arrows). This
aberration in the topographic map leads to two termination
zones (TZs) in SC for two neighboring cells in retina, rather
than a single zone in wild-type [20].
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Maps in Isl2+/Eph3+ mice. The top row is reproduced from Ref. [20] (Figure 5). The bottom row illustrates the corre-

sponding distribution of EphAs.

In addition to the observation of the overall map dou-
bling in homozygous knock-ins (Figure 2C), Brown et al.
discovered a curious behavior of the map in heterozygous
animals. In these animals the exogenous levels of EphA3
were reduced roughly by a factor of two with respect to the
homozygous knock-ins (Figure 2B). In terms of the
expression density of EphA3 these animals stand between
the wild-type and knock-in animals. Accordingly, the
structure of the map resembles a hybrid of the wild-type
and homozygous maps. The more rostral part of the map
is single-valued, similarly to the wild-type, whereas about
60% of the caudal-most part is double-valued, like in the
homozygous animals. This observation suggests that the
map bifurcates somewhere between double-and single-
valued regions. Although overall doubling of the map in
homozygotes is easy to understand, any true model for
the retinocollicular map formation should be able to
account for the bifurcating behavior of map in heterozy-
gotes. Therefore, experiments in heterozygotes represent a
powerful tool to falsify various theoretical models.

Brown et al. [20] suggest that the bifurcating behavior of
the map is consistent with the importance of relative
rather than absolute values of the expression levels.
Indeed, the relative difference of exogenous EphA3 to
endogenous EphA5/6 is maximal in nasal retina (caudal
SC), where the doubled map is observed (Figure 2B). In
the temporal retina (rostral SC) the EphA3 to EphA5/6
ratio is not so large, which may account for the fact that
the map is single-valued there. Thus a model for the top-
ographic map from retina to SC should rely on the relative
but not absolute levels of EphA signaling.

The point, which we make in this study, is that more
experimental tests are needed to justify the suggestion
about relative expression levels. To make our point clear
we present a model for the retinocollicular map forma-
tion, which is based upon differences in the absolute val-
ues of Eph/ephrin expression levels, rather than relative
differences. Our model manages to reproduce all the
essential features of experiments described in Brown et al.
[20], including bifurcation of the map in heterozygotes.
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In the model presented here the map is single-valued in
rostral part of heterozygous SC due to inhomogeneous
gradients of ligand and receptor, rather than reduced rela-
tive difference of EphA receptors. Below we suggest exper-
imental tests, which may distinguish these two classes of
models. This model was presented previously at Society
for neuroscience meeting 2001 and on the arXiv preprint
server [22,23].

To test various hypotheses we use a model for retinocol-
licular map formation employing stochastic Markov
chain process. Our model is based upon three principles:
chemoaffinity, axonal competition, and stochasticity.
Some features of our model are similar to arrow model of
Hope, Hammond, and Gaze [24]. The implementation of
the model used here is available in [25].

Results

Markov chain model

Let us first describe the 1D version of the model. We con-
sider a linear chain of 100 RGC, each expressing individ-
ual level of EphA receptors given by RA(i), where i =
1...100 is the RGC index, which also determines a discrete
position of the cell in the retina. We have verified that
results presented below do not depend on the number of
cells, as long as this number is large enough. Each RGC is
attached by an axon to one and only terminal cell in SC,
which has an expression level of ligand given by LA(k),
where k = 1...100 is the index in SC, also describing the
terminal's topographic position. The receptor density RA
is an overall increasing function of its index i, while the
ligand density LA is decreasing, when going from k = 1
(caudal) to k = 100 (rostral) positions (Figure 3). This
determines the layout of chemical "tags" used to set up
map's "topography". An additional feature is that no two
cells can project to the same spot in SC, which is meant to
mimic axonal repulsion/competition for positive factors
in SC, described in detail by Ref. [10].
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Figure 3
Description of the |D model
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We start from a random map, in which the terminal posi-
tions of all RGC axons in SC are chosen randomly. We
then modify the map probabilistically, using the follow-
ing rule. We consider two axons projecting to the neigh-
boring points in SC (1 and 2 in Figure 3). We attempt to
exchange these axons in SC with probability

Pexcranae =5 +o[ RA(1)=RA(2) ][ 14(1)-14(2) ] (1)

Here o > 0 is the parameter of our model. The probability
of the axons to stay unchanged Py, y is determined from
Prxcrance + Prerany = 1 and is therefore given by

Prean =5~ RA(1) =RA(2) [[14(1)-14(2) ] (2)

Since the only difference between these probabilities is
the sign in front of ¢, it is important to describe the nature
of this sign.

Assume that the product of gradients in Eq. (1) is negative,
i.e. the gradients run in the opposite directions, which cor-
responds to the correct order of axonal terminals in SC.
Then Ppxcpance < 1/2 and Prxcpance <Preran i-e. the
probability or retaining the current ordering of the axonal
pair is larger than changing it. This is consistent with the
chemorepellent interactions of receptors and ligands. In
the opposite case of the wrong order, i.e. when the prod-
uct of gradients in Eq. (1) is positive and gradients run in
the same directions, Pgxcyance >Preran Dy the same rea-
soning. The described process will tend to exchange the
order of gradients and, therefore establish the correct
order of topographic projections. By using probabilities
described by Egs. (1) and (2) we incorporate the chemoaf-
finity principle into our stochastic model. This step is then
repeated for another nearest neighbor couple, chosen ran-
domly, and so on, until a stationary distribution of projec-
tions is reached. Such a process belongs to the class of
Markov chain processes, since transformations to the map
are determined only by the present state of the mapping
and are not otherwise affected by development history
[26].

Let us first consider cases in which final distribution can
be understood without the use of computer. The model
described by (1) can be solved exactly for at least two lim-
iting cases: when « = 0 and when « is very large. In the
former case (« = 0) the information about chemical labels
cannot affect the solution, since it is multiplied by 0 in Eq.
(1). Hence, the map is completely random (Figure 4B). In
the latter case (« is large) the molecular cues are very
strong. They eventually produce solution in which the
axons are perfectly sorted in SC in the order of increasing
density of receptor (Figure 4D). An intermediate situation
with certain finite value of parameter « is described by a
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Figure 4
Typical solutions of 1D model A. Distribution of ligand (top) and receptor (bottom). B. Solution of the model for « = 0.
Red dots represent terminal positions of individual axons, originating at various points in retina. If the case & = 0 the map is
completely random, since all the chemical cues are multiplied by zero in Eq. (1), and, therefore, cannot contribute to the solu-
tion. D. ais very large. Solution represents perfect ordering of axons in SC in the order of increasing density of receptor. This
is because the chemical cues are extremely strong in this case, much stronger than noise. C. & = 30. At the intermediate value
of a solution is a compromise between chemical signal and noise.
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compromise between noise and chemical cues, with
former randomizing the map on the finer scale, while the
latter inducing the overall correct ordering (Figure 4C).
We conclude that mean position of projections is
controlled by the chemical signal, while the spread of pro-

jections or the size of TZ is determined by noise (Figure
4C).

It should be noted that in the case of large « (perfect sort-
ing, Figure 4D) our model is equivalent to the arrow
model, introduced by Hope, Hammond, and Gaze in
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[24]. The arrow model uses exchanges between nearest
axons if they terminate the wrong way in tectum/SC. It can
also include stochastic steps, as described in [24,27]. The
stochastic behaviors of the model described here [Egs. (1)
and (2)] and the arrow model are not the same (see
Discussion).

Topographic maps in knock-in mice

Figure 5 summarizes results obtained in our model. The
top row shows distributions of chemical 'tags' corre-
sponding to the wild-type, heterozygous, and
homozygous knock-in conditions in Brown et al. [20].
The second row shows the corresponding probability dis-
tributions for axonal projections. The third row in Figure
5 displays maxima of the probability distributions, shown
to make map structure more visible. These results qualita-
tively agree with Brown et al. [20] (see Figure 2 above), for
all three cases.

Maps in both wild-type mice and homozygote conditions
(Figure 5, columns A and C) can be understood on the
basis of axonal sorting in SC in the order of monoto-
nously increasing levels of EphAs. Results of such sorting
are displayed in the bottom row in Figure 5. It is clear that
maps resulting from simple sorting reproduce all essential
features of mapping observed in wild-type and
homozygotes. At the same time, bifurcation, observed in
heterozygotes (column B), is not captured by simple sort-
ing procedure. This observation led us to develop the ver-
sion of noisy sorting, based on chemical cues, described
here.

Why does the blending of two maps occur in rostral SC?
This question is addressed below in discussion section.
Here we display manipulations with 'chemical tags',
which can shift the bifurcation point in our model. These
manipulations point to two factors, which contribute to
the location of the bifurcation point. The first factor is
inhomogeneous endogenous EphA5/6 density. It results
in a smaller separation between two branches of the map
observed in rostral SC (Figure 5B and 5C, bottom). The
second factor is a smaller gradient of ligand in rostral SC
(single-valued map region) than in caudal SC. Both these
factors are addressed below.

Let us now demonstrate the impact of inhomogeneous
EphA gradient on bifurcation. Figure 6 (column A) shows
that if the endogenous gradient of receptor is made more
inhomogeneous, the point of bifurcation is shifted cau-
dally. This means that the single-valued part of the map
becomes larger. To see this, notice that the density of
receptor in Figure 5 (column B) has a minimum value of
about 0.3. The minimum value of the receptor density in
Figure 6 (column A) is about twice as small. Hence the
endogenous receptor density in Figure 6A changes faster

http://www.biomedcentral.com/1471-2202/5/30

than in Figure 5. The results of simple sorting of axons
according to increasing level of receptor are also shown in
Figure 6A (bottom). Two branches of the map approach
each other closer than in Figure 5B. This is consistent with
the expanded single-valued part of the map observed in
Figure 6A.

But is receptor distribution the sole determinant of the
position of the bifurcation point? To demonstrate that the
latter is also controlled by the gradient of ligand in SC we
reduce the density of ligand uniformly by 25% (Figure
6B). This may mimic experiments in which increment in
RGC receptor is combined with reduction in ephrin-A lig-
and density. As a result, the point of transition between
single-valued and double valued parts of the map is
located more caudally in Figure 6B than in Figure 5A.
Hence, we can affect the point of transition by changing
the densities of both receptor and ligand to a similar
degree. These results are explained below in the discussion
section.

Finally, we verify that increasing of the gradient of ligand
leads to a small expansion of double-valued part of the
map. This result is demonstrated in Figure 6C. This exam-
ple shows once again that ligand concentration can affect
the position of bifurcation point and that increasing the
ligand profile inhomogeneity (Figure 6C, top) leads to a
more pronounced bifurcation effect (compare to Figure
5B).

Results for 2D model

We simulated 2D development using the hypothesis that
another pair of chemical tags, EphB family of receptors
and their ligands, ephrins-B, are responsible for establish-
ing topographic projection from dorsal-ventral (DV) axis
on retina to lateral-medial axis in SC [9]. EphB2/3/4 are
expressed in high-ventral-to-low-dorsal gradient by RGCs
[28-30], while ephrins-B are expressed in high-medial-to-
low-lateral gradient in tectum/SC [30]. Since dorsal/ven-
tral axons project to lateral/medial SC this implies attrac-
tive interactions between EphB+ axons and ephrin-B rich
environment [31] (see, however [32]). In our model the
attractive interactions are modeled by the following
exchange probability of two axonal terminals in the DV
direction:

Poxcrancr =5~ B{RB(1)~RB(2) ][ 18(1)-15(2)] (3)

Here RB(1), RB(2), LB(1), and LB(2) are EphB receptor
and ephrin-B ligand densities at neighboring points 1 and
2 in SC. This probability is similar to Eq. (1). Notice a sign
change compared to Eq. (1), which insures that Ppycpance
>Preramn if the order of gradients is wrong, i.e. if the gradi-
ents of receptor and ligand are antiparallel. By choosing
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heterozygous IsI2/Eph3 knock-in conditions. The bifurcation of the probability distribution is similar to results of Ref. [20] (see
Figure 2 above). C. Results for homozygous knock-in conditions. For all three conditions, the top row represents distributions
of chemical labels. The second row shows the probability distributions. The brightness of color at each point in the middle
image represents probability that an axon originating from the horizontal position projects to the point's vertical position. The
bottom row shows positions of maxima of probability density distributions displayed above. The red squares correspond to
wild-type cells; black markers determine maxima of distributions for Is|2+/EphA3+ RGCs. A slight even-odd oscillation
observed in these panels is an artifact of ordering of wild-type and EphA3+ axons in retina. The bottom row shows maps

obtained by sorting retinal receptor density.
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Figure 6

Manipulations with chemical labels, which lead to shifts in the bifurcation point A. The endogenous receptor gradi-
ent is made steeper compared to Figure 5B. The single-valued part of the map expands caudally. B. Density of ligand is reduced
by 25%. Similar expansion of the single-valued part of the map is evident. C. The ligand gradient is made steeper. This is to
reproduce the possible effect of ligand dimerization. The bifurcation point is moved slightly rostrally, expanding the double-val-
ued part of the map. In all three columns the vertical arrangement of panels is similar to Figure 5.
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this sign we therefore ensure attraction between axons and
ligands.

The details of our simulations are described in Methods.
Our model allows not only exploration of two-dimen-
sional maps (Figure 7) but also observing and modeling
temporal development (Figure 8). Videos with detailed
evolution of the map are available in [25].

Discussion

Why does the map in heterozygotes bifurcate?

In our model the map is formed through interaction of
three factors: Eph/ephrin-based chemorepulsion/attrac-
tion, competition between axons for space, and noise. It is
the latter that fuses two maps together in rostral SC (Fig-
ures 5B) in this model. Therefore, to understand position
of the bifurcation point one has to consider the interplay
between signal and noise at different positions in the
map.

As we have shown above both ligand and receptor distri-
butions influence the range of single-valued portion of
the map independently (Figure 6, columns A and B). Let
us first address the impact of ligand distribution. Figures
9 and 12A show that the gradient of ligand is the smallest
in rostral SC. This leads to a larger impact of noise there.
Since noise drives blending of two branches of the map,
this blending first occurs in rostral SC, in agreement with
Brown et al. [20]. Interestingly, Brown et al. also shows
larger diameters of axonal TZ in the single-valued part of
the map, which is consistent with the larger impact of
noise there.

The second factor contributing to bifurcation in heterozy-
gotes is inhomogeneity of EphA gradient in retina. Con-
sider the case of no noise. Mapping in this case is obtained
by sorting axonal terminals in the order of increasing den-
sity of EphA (Figures 10, 5, 6). Separation between two
maps is the smallest in rostral part (Figure 10B). This is
because of inhomogeneous gradient of receptor in 'reti-
nal' cells (Figure 10A). Therefore, even if noise were the
same in all parts of the map, rostral part has the smallest
signal in terms of separation between two maps, and the
largest potential to be blended by noise.

We conclude that two factors, increased noise and reduced
signal, cooperate in rostral SC in fusing the wild-type and
knock-in maps. This leads to the formation of single-val-
ued map there. In caudal part both noise is reduced and
distance between maps is larger. Hence, the map is dou-
ble-valued in caudal SC.

Mapping in Isi2IEphB knock-ins has two bifurcations
It is possible to spatially separate these two blending fac-
tors, increased noise and decreased signal, if one applies

http://www.biomedcentral.com/1471-2202/5/30

the same logic to the DV axis of the map. In our model this
mapping is implemented by attractive interactions
between EphB+ axons and ephrin-B rich environment.
Hence, DV mapping is "flipped" with respect to the TN
one in the sense that high EphB gradient region of retina
maps to a high ephrin-B gradient region in SC. Two blend-
ing effects described above (reduced signal and increased
noise) are therefore spatially separated for the DV axis. To
observe mapping in these conditions we performed a
numerical "experiment" on the Is12/EphB knock-in condi-
tions. This may have relevance to mapping in DV direc-
tion. The results are shown in Figure 11.

Two bifurcations observed in Figure 11 confirm the
hypothesis about two factors operating in the numerical
model. The ventral bifurcation is associated with receptor,
since separation between two maps in perfectly ordered
conditions is the smallest in medial SC. The second bifur-
cation, dorsal, occurs due to noise, since noise is maximal
where the gradient of ligand is the smallest, i.e. in lateral
SC. Thus, we suggest that experiments on Isl2/EphB
knock-ins should make clear if inhomogeneity in receptor
density or noise is more important.

It is also possible that activity-dependent mechanisms
drive blending of two maps. Activity leads to focusing of
projections whereby axons with close locations in retina
are effectively attracted to each other in SC. Activity-
dependent attraction will blend axons positioned proxi-
mally in SC, therefore ventral bifurcation, described
above, may be robust with respect to these factors. The
dorsal bifurcation, on the other hand, may or may not be
observable if activity-dependent focusing of projections
takes place. These questions will be addressed in future
studies.

Absolute versus relative

Brown et al. [20] demonstrates that retinocollicular map-
ping is based on relative levels of EphA/ephrin-A
expression in the broad meaning of this term. Indeed, the
absolute value of EphA density does not determine where
an axon terminates in colliculus. This is because axonal TZ
may shift in the presence of axons with altered expression
of chemical tags. For example, wild-type axons terminate
more caudally in the presence of Isl2+/EphA3+ axons.
Hence, an important factor is the presence of other axons,
relative to which given axon establishes its termination
point. This idea is also evident from retinal and collicular/
tectal ablation experiments in rodents [33,34] and other
species [2].

Can we take this idea to the next level and hypothesize
that relative differences between neighboring retinal cells
represent the chemical signal? This suggestion was used
[20] to explain blending of the two maps in heterozygous
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Figure 7

Numerical simulation of labelling in the 2D model. The top row shows anterograde "labeling spots" in retina. The fol-
lowing three rows display corresponding distribution of label in SC. The size of both retinal and collicular arrays is 100 by 100
cells. The three rows show results for wild-type, heterozygous knock-ins, and homozygous knock-ins, as marked on the left.
Notice the doubling transition, when going from temporal to nasal injection in heterozygotes. This Figure is to be compared to
Figure 4 from Ref. [20]. & = = 30. The color map is shifted in each image for visibility. Abbreviations: D, dorsal; V, ventral; N,
nasal; T, temporal; C, caudal; R, rostral; L, lateral; M, medial.

Page 10 of 17

(page number not for citation purposes)



BMC Neuroscience 2004, 5:30 http://www.biomedcentral.com/1471-2202/5/30

=

r—
Py
@]

Figure 8

Map refinement. Wild-type (left) and ki/ki (right) map development for axons in the central retina. The retinal injection site
is the same as in Figure 7, top row and central column. The temporal evolution of the map is shown for t = (0, 8, 16, 24, 32,
and 100) x 10000 iterations. The orientation of images is the same as in Figure 7. The color map is rescaled in each image for
visibility.
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Figure 9
Reduced gradient of ligand in rostral SC may explain single-
valued map there.

rostral SC, since relative differences in receptor levels are
the smallest in the corresponding part of retina (tempo-
ral). In this study we present a model, which uses
differences in absolute values of chemical label, as seen
from Eq. (1). Indeed, in our model adding a constant
value to all densities does not change the resulting map-
ping, since (1) depends only on differences in expression
levels. But this manipulation decreases the relative
differences in the expression of EphAs between neighbor-
ing knock-in and wild-type cells. Hence, our model is not
based on relative differences between receptor densities.
Yet, we demonstrate that it can account for experimental
results in detail. Thus, we suggest that existing experimen-
tal evidence is not sufficient to distinguish relative and
absolute labeling in the narrower sense.

Of course, our model also accounts for the caudal dis-
placement of wild-type TZs, thus resulting in a relative
labeling system in the broad sense. In the first approxima-
tion, this model performs a sorting procedure, under-
stood mathematically, of the fibers based on the
expression levels of EphA. Our procedure uses differences
in absolute values of EphA densities rather than relative
differences. We suggest that more quantitative evidence is
needed to distinguish these two "relativity principles”.

Relative labeling in the narrow sense can be incorporated
in our model too, if coefficient « is a function of label
densities. Thus, the condition « « 1/(RA-LA) ensures the
Weber's law for axonal "perceptual thresholds", since
chemical signal is proportional to the relative differences.

Comparison to other theoretical models

Theories based on chemoaffinity principle are reviewed in
[4]. Some features of our approach are similar to the arrow
models described in Ref. [24,27], which employs
exchanges between neighbouring axons to establish
ordered retinotectal/collicular maps. At the same time
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Mapping for heterozygotes in case of no noise. The
separation between wild-type and EphA3 knock-in axonal
terminals is larger in caudal than in rostral SC, due to inho-
mogeneity in EphA profile.

some features of our model are different from the arrow
model. First, we employ information about chemical
labels, Ephs and ephrins. At the heart of our model are
equations (1-3), which rely on the known distributions
of chemical labels. These equations are unique to our
approach. As it was noted above, in the absence of
stochasticity (¢ — ), when perfectly ordered map is
formed, our 1D model with nearest neighbor exchanges is
equivalent to the 1D version of the arrow model. How-
ever, in the stochastic regime, description of developmen-
tal noise is different here. In particular, we relate features
of the map, to the distribution of chemical labels. We
argue that this feature is important in understanding
experiments [20], since distribution of labels determines
where TZs fuse to form bifurcations. Second, we consider
both nearest neighbour and distant neighbour exchanges
(see Methods for more detail). Indeed, Eq. (1-3) can be
applied to determine exchange probability for a pair of
distant axons too. This feature may be crucial, since devel-
opment of map in the RC direction is determined by orig-
inal primary axonal overshoot with subsequent retraction
of inappropriate projections [3,9]. In this process the
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Mapping in heterozygous Isl2/EphB knock-ins. Two bifurcations are observed, one in medial, another in lateral SC.

interstitial branches of the same primary axon are elimi-
nated and subsequently added non-locally. We show
below in Method section that in many cases local and
global exchanges produce the same results in terms of
final distribution of projections. But, the process of devel-
opment is different in the local and global exchange cases.

Prestige and Willshaw [35] suggested to divide develop-
mental mechanisms into two groups. In group I mecha-
nisms each RGC axon has maximum affinity to certain
unique point in the target, even without other axons. In
group I mechanisms, the position of TZ results from com-
petitive interactions with other axons. Our model defi-
nitely belongs to the second group, since we assume that
all axons experience maximum affinity to rostral medial
SC and are spread over entire SC by competition. Our
approach is similar to described in Prestige and Willshaw
in the way how graded distributions of molecular tags are
represented. The details of map modifications are
somewhat different in this study and are precisely defined
by Egs. (1-3).

In a recent study Honda [36] considered results of experi-
ments [20]. He used servomechanism model to explain
the overall structure of the maps in mutants. Servomecha-
nism model is a hybrid between group I and II models in
terminology of Prestige and Willshaw, since it assumes
that axons have equilibrium points in SC and they are
subject to competition with each other. Although Ref.
[36] reproduces doubling of the map in homozygotes it
does not succeed in obtaining the bifurcation observed in
heterozygotes, which is one of the purposes of the present
study.

On the biological realism

When dealing with numerical simulations one always
faces the question of the degree of realism with which to
model the data. Does one have to model behaviors of
individual atoms, or description on the level of axons is
sufficient? In this work we choose the level of description
on the basis of what is known about this system. We real-
ize that our model does not capture many behaviors, but
we argue that the mechanisms involved are unclear at the
moment to be incorporated into a more detailed model.
Our approach also fulfils its original goal, which is to
reproduce the results of experiments [20] and to generate
experimentally testable predictions, thus satisfying the
requirement of parsimony.

Model presented here does not describe the difference
between development along TN and DV axes. The former
mapping is controlled by original axonal overshoot along
the RC direction in SC, with subsequent elimination of
topographically inappropriate projections [3,9]. In
contrast, primary axons from the same DV retinal position
enter SC in a broad distribution along ML axis. Topo-
graphically precise termination is provided by producing
additional interstitial branches in the ML direction
[31,32,37,38]. These findings cannot be reproduced by
our model, since no distinction is made between the pri-
mary RGC axon and its branches. Instead, our model
deals with terminal points of interstitial branches pro-
duced by RGC axons.

Conclusions
We present a model for retinocollicular map develop-
ment, which can account intriguing behaviors observed in
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The choice of receptor/ligand expression profiles. A,
Density of ephrinA ligands in SC obtained from RNA hybrid-
ization [10]. B, Density of EphB receptors in retina from
RNA hybridization [20]. C, density of RGC in retina [39]. D,
Density of EphA receptor per cell, obtained by dividing B by
C. Vertical axes in A, B, and D are in arbitrary units. Dashed

lines show the exponential approximations used in this study.
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gain-of-function experiments by Brown et al. [20], includ-
ing bifurcation in heterozygous Isl2/EphA3 knock-ins.
The model is based on chemoaffinity, axonal repulsion/
competition, and stochasticity. We discuss possible map-
pings in ephrinA-/Isl2+/EphA3+ knock-out/ins and Isl2/
EphB knock-ins.

Methods

ID model

To find a stationary distribution of the RGC's axons in the
SC, we use the following computational procedure. We
consider a linear chain of 100 RCG that are connected to
one and only terminal cell in SC each. The receptor and
ligand expression level profiles used in the computations
for wild-type, heterozygote and homozygote are shown at
Figure 5A,5B,5C. We start with the random map where the
position of every axon in SC does not depend on the level
of its receptor expression. Then we perform stochastic
reconstructions through an exchange of the positions of
the neighboring axons in SC. Namely, at each step we ran-
domly choose one pair of axons out of 99 neighboring
pairs and switch their positions with the probability given
by Eq. (1). In both cases, whether the positions of the
axons are exchanged or they retain at their old locations
we proceed to the next step when we choose a new pair of
neighboring axons. We repeat the process until a station-
ary distribution of the probabilities for the positions of
the RGC's axons in SC is reached.

The typical stationary solution for one realization is
shown at Figure 4. Here the number of iterations is 10°
(nearest neighbor exchanges). The main parameter of our
model is taken to be a = 30 throughout the paper. It is
chosen to fit the experimental data from Brown et al. [20].
We have observed that the value of « is roughly equal to
inverse of the relative diameter of the TZ squared. Thus, in
our results, TZ occupies, roughly, 20% of the entire SC,
which corresponds to the value of « given above. The
probability distribution and the position of the maxi-
mums shown at Figure 5 and 6 are obtained by temporal
averaging over 5 x 104 realizations of stationary solution
separated in time by 103 iterations (nearest neighbor
exchanges).

The choice of receptorlligand expression profiles

We base our choice of parameters for the distribution of
molecular markers on experimental observations in
mouse retina and SC. Thus, the distribution of ephrinA2
and A5 is obtained in [10]. The total distribution of ligand
in SC is shown in Figure 12A. It resembles closely the dis-
tribution used in this study LA(x) = exp(-x) (Figure 4A,
etc). Note that the constant factor in front of the exponen-
tial is taken to be 1 in our model, since any non-unit factor
is absorbed into parameter « [cf. Eq. (1)].
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The distribution of receptors in retina requires more thor-
ough consideration. The distribution of strength of EphA
S-RNA hybridization signals is measured in [20] and is
shown in Figure 12B. From this distribution one has to
obtain the density of receptor expression in single axon,
emanating from given point in retina. To this end the
overall strength of the hybridization signal is divided by
the RGC density in cells/mm?, obtained in [39] (Figure
12C). The resulting distribution of EphA receptors per cell
is shown in Figure 12D. It is matched closely by the func-
tion used in this study RA(x) = exp(-x) (see Figure 4A, etc)
in > 95% of retina. Additional distortions introduced by
non-uniform linear magnification factor are estimated by
us to be small (< 10%), based on data from [39,40]. Such
distortions cannot be calculated directly, since a complete
topographic map from retina to SC is not available. The
errors introduced by non-uniform map do not exceed the
precision with which the density of receptors is originally
measured, estimated from the noise in [20].

In the EphA3+ retina the density of receptor is increased
in every second cell by 50% and 25% of the maximum
value in homo and heterozygotes respectively. These
parameters are chosen to match the overall map structure
(Figure 5) to that observed experimentally in [20] (Figure
2). The particular parameter which was chosen for such
comparison was the overall distance between the wild-
type and knock-in cells, equal approximately to 40 and 20
percent in homo and heterozygotes. Since such distance is
approximately constant in the homozygotes, the effects of
receptor dimerization, discussed in [7], are assumed to be
negligible. This may occur due to saturated conditions
(almost all receptors are in the dimerized state). The
effects of ligand dimerization are impossible to estimate
at the moment. To assess this effect in our model we verify
that our results are not changes significantly if ligand den-
sity is below dissociation density for dimerization, i.e. the
effective ligand density interacting with the receptor is
equal to the square of actual density, LA(x) = exp(-2x)
(Figure 6C).

The profiles of expression of EphB/ephrinB pair are meas-
ured in [31] similar to EphA/ephrinA. They are taken to be
LB(y) = exp(-y) and RB(y) = exp(-y). As with the EphA/
ephrinA the non-unit overall factors in these distributions
are absorbed in parameter S (see below).

2D model

Here we describe our 2D model in more detail. We con-
sider an array of 100 by 100 RGC, which are connected to
100 by 100 different points in colliculus. Each RGC is
characterized by two levels of expression for two recep-
tors, EphAs and EphBs, described in the text. The concen-
tration profiles are taken to be the same for EphA and
EphB receptors in the wild-type species. In the
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homozygote and heterozygote cases the concentration of
EphA is taken as shown at Figure 5, while the concentra-
tion of EphB is unchanged. RGCs do not express ligand in
our model. The collicular receptacles are described by two
ligand concentrations with the same profiles as shown at
Figure 5 but with different gradient directions discussed in
the text.

The process of development is modeled as follows. We
randomly choose a pair of axons in SC separated either in
RC or in ML direction. We exchange their positions with
the probability given by Eq. (1) or Eq. (3) respectively. We
then repeat the process until a stationary distribution of
probabilities is reached in the same manner as for 1D
case. Note, that this time a chosen pair of axons, say in RC
direction, may not be a neighboring pair, but consist of
two axons separated by any distance in SC. This procedure
dramatically decreases the convergence time to the sta-
tionary distribution, which is the same as in the case when
we choose the neighboring axons only. The noise level is
taken to be the same for both RC and ML directions, that
is = f=30.

The spatial 2D distribution of the axons corresponding to
labeled RGCs is shown at Figure 7. The "labeling spot" in
retina is a circle with radius R = 7.3, the coordinates of the
center are (15,50), (50,50) and (85,50) on the 100 x 100
grid. The distribution is obtained by averaging the posi-
tions of the labeled axons in SC over 1000 realizations
after it reached the stationary solution at 1 x 10° itera-
tions. The temporal evolution of the map for the label in
the central retina is shown at the Figure 8. It corresponds
to averaging over 1000 different realizations at each time
interval.

In both 1D and 2D cases the calculations were performed
on Dell PowerEdge 1600SC server. The programs, written
on Matlab (MathWorks, Inc.), are available for download
in [25].

Limiting probabilities between 0 and |

Equations for the probability of switching of two axons
(1) and (2) can yield probabilities, which are below 0 or
larger than 1. Thus, in the numerical implementation of
our model instead of (1) and (2) we use expressions with
soft cutoff at 0 and 1, i.e.

PexcraNGE :%+%1anh(2a[RA(1)—RA(2)][LA(1)—LA(2)]), (4)

PreraiN = 1= PexcHANGE (5)
These probabilities are restricted to be between 0 and 1. In

addition, when differences in ligand and receptor
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densities between neighboring points are not large, (4)
and (5) are equivalent to (1) and (2).

Local versus global transitions

One could use exchanges between nearest neighbors to
implement map development, as described in text above
and in [24]. Alternatively, one could consider swaps
between two distant axons chosen randomly. An exact
statement, a proof of which we provide here, is that the
final probability distribution for connectivities does not
depend on whether the swaps are local or global. This
statement is true, for any distribution of chemical labels,
in 1 or 2D. It is true however if Eq. (4) is used to calculate
probabilities of transitions. In particular, we show that Eq.
(4) leads to a Boltzmann distribution of the probabilities
of connections, which does not depend on the locality/
globality of transitions. Thus, we can present final maps
for both local and global transitions interchangingly,
since results pertaining to the final state of the map, such
as in Figures 4,5,6,7 and 10,11, do not depend on the
choice of transitions. However, the temporal dynamics of
map evolution does depend on this choice. Normally, the
convergence of the map to the final distribution is faster
with global transitions. Thus, Figure 8 shows evolution of
the map for the case of global swaps. The sequence in Fig-
ure 8 would be different, if the swaps between nearest
neighbors were used.

Let us now derive the probability distribution of projec-
tions in the final map. We perform our derivation for the
1D case; in 2D it is similar. We proceed using the detailed
equilibrium principle, frequently employed in statistical
mechanics [41]. Consider two states of the map, symboli-
cally denoted by A and B. These states are described by
corresponding probabilities P, and Pg. These probabilities
satisfy the detailed equilibrium condition [41]

PpPp_sp = PgPp_sa, (6)

where the transition probabilities are given by equation
(4). After some algebra, it is possible to show that the tran-
sition probabilities are given by a simpler than (4) form

Pyp =‘1/[14—e4“(EB‘EA)], (7)

where E, and Ej are 'state' variables, depending on the cur-
rent arrangement of axons in the target

%=ZNUMW (8)

Here summation is assumed over all termination sites in
SC, denoted by index i, with L(i) being the ligand concen-
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tration and R(i) the receptor concentration. The latter, of
course, depends on the arrangement of axons, corre-
sponding to the state A. The transition probability Py _, ,
is given by the same expression, with exchanged indexes A
and B. The detailed equilibrium condition (6) leads then
to Botzmann probability distribution of the states of the
map

e—4aE A

Py=t—. (9)

Eq. (9) is instrumental in showing that the final distribu-
tion of projections in our approach does not depend on
the methods of reconstruction. Thus, both global and
local transitions will lead to identical final arrangement of
the map. This property is well-known in considering
Metropolis Monte-Carlo procedures. What does depend
on the methods of reconstruction is the time, which it
takes to reach the final configuration. Thus, as it was men-
tioned above, global transitions lead to the final state
much faster. With local transitions, on the other hand the
map can freeze in the original state, and it may take an
exponential time to reach the final configuration.

We thus conclude that our results presented in this study
are universal in that they do not depend on the exact
developmental mechanism, but only on the distribution
of 'chemical' tags.
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