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Abstract 

Background:  Current antiepileptic drugs are not able to prevent recurrent seizures in all patients. Orexins are excita-
tory hypothalamic neuropeptides that their receptors (Orx1R and Orx2R) are found almost in all major regions of the 
brain. Pentylenetetrazol (PTZ)-induced kindling is a known experimental model for epileptic seizures. The purpose of 
this study was to evaluate the effect of Orx2 receptor antagonist (TCS OX2 29) on seizures and anxiety of PTZ-kindled 
rats.

Results:  Our results revealed that similar to valproate, administration of 7 µg/rat of TCS OX2 29 increased the 
latency period and decreased the duration time of 3rd and 4th stages of epileptiform seizures. Besides, it signifi-
cantly decreased mean of seizure scores. However, TCS OX2 29 did not modulate anxiety induced by repeated PTZ 
administration.

Conclusion:  This study showed that blockade of Orx2 receptor reduced seizure-related behaviors without any sig-
nificant effect on PTZ-induced anxiety.
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Background
Epilepsy is a chronic neurological disorder that its main 
characteristic is the recurrent appearance of spontane-
ous seizures [1]. Research on experimental models of this 
disease indicates that there is an imbalance between the 
inhibitory GABAergic and excitatory glutamatergic neu-
rotransmission in the central nervous system (CNS) [2]. 
At present, various antiepileptics are available. However, 
dose-related neurotoxicity, a range of drug interactions, 
and systemic side effects are the major problems caused 
by current antiepileptic drugs [3].

Orexins (orexin A and B) are hypothalamic excitatory 
neuropeptides [4]. Orexinergic neurons are located in the 
lateral hypothalamic area, perifornical area, dorsomedial 
hypothalamus, and posterior hypothalamus, which pro-
ject to different parts of the brain [5]. The physiological 
functions of the orexins are mediated by two G-protein 
coupled receptors: orexin receptor type 1 (Orx1R) and 
orexin receptor type 2 (Orx2R). The affinity of Orx1R for 
orexin A is higher than orexin B, whereas Orx2R has a 
similar affinity for both neuropeptides [6]. Stimulation 
of these receptors increases intracellular Ca2+ through 
Gq/11 activation in orexin responsive cells [7]. It was 
demonstrated that the activation of orexin receptors 
provoked cortical pyramidal cells and enhanced cortical 
excitability [8, 9]. Orexin A was reported to be involved 
in long-term potentiation of synaptic transmission in 
the CA1 region of the hippocampus. This effect was 
dependent on ionotropic and metabotropic GABAergic, 
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glutamatergic, as well as cholinergic and noradrenergic 
receptors implying the active role of the orexinergic sys-
tem in learning and memory [10]. Similarly, Riahi et  al. 
[11] showed that administration of orexin A in the lateral 
ventricle of the rats increased electrical activity of the 
hippocampal pyramidal neurons.

Orexins regulate the release of serotonin, gamma-
aminobutyric acid (GABA), and glutamate [12, 13]. These 
neurotransmitters are involved in the regulation of sleep 
and wakefulness, pain, food intake, reward, multiple 
sclerosis, and stress [5, 14]. As mentioned, orexins have 
excitatory effects in the CNS. There is evidence imply-
ing that orexins may be involved in the generation and 
propagation of seizures. For example, it was reported that 
intracortical and intracerebroventricular injections of 
orexins caused seizure-related behaviors in rats [15, 16]. 
Both orexin A and B enhanced the excitability of the cen-
tral nervous system following administration of penicillin 
G [17]. In accordance, it was revealed that during pilocar-
pine-induced epileptic activity, the expression of orexin B 
was increased in the rat hippocampus [18].

Chemical kindled seizure is an animal model of tempo-
ral lobe epilepsy induced by repeated administration of 
an initially subconvulsive chemical stimulus such as pen-
tylenetetrazol (PTZ) that results in behavioral signs of 
tonic and clonic seizures [19]. Injection of such chemicals 
decreases seizure threshold and culminates in a general-
ized seizure [20]. In other words, PTZ increases seizure 
susceptibility. The molecular mechanism(s) behind this 
phenomenon has not been well understood. Some studies 
have offered that inhibition of main inhibitory systems of 
the CNS including GABAA-mediated actions and activa-
tion of stimulatory systems such as NMDA, AMPA, and 
kainate receptors are part of a complex network that cul-
minates in the development of kindling [21, 22]. Kindling 
has been introduced as a reliable experimental model for 
complex partial epilepsy in patients [23] and has been 
considered as a drug-resistant model of epilepsy [24].

On the other hand, anxiety is a common comorbidity 
that is related to epilepsy [25]. It has been demonstrated 
that the orexinergic system and the hypothalamic–pitui-
tary–adrenal axis contribute together in the modula-
tion of stress responses [26]. Moreover, orexins exert 
anxiety both in mice and rats [27, 28]. Using optogenetic 
approaches, Sears et  al. [29] showed that stimulation 
of orexin fibers in the locus coeruleus increased threat 
memory formation induced via an auditory stimulus. 
Also, it was demonstrated that orexin A levels in the 
amygdala were increased following social interaction, 
positive emotions, and anger in narcoleptic patients [30]. 
Another study showed that there was a positive rela-
tion between orexin levels and childhood maltreatment 
[31]. All these studies imply that orexinergic system has 

an important role in the modulation of anxiety both in 
rodents and human. On the other hand, orexin is an 
important neuropeptide with significant effects on food 
intake. It increases appetite and consequently food intake. 
As nutrition has been reported to be involved in anxiety 
[32], it is a possibility that orexins and their antagonits, 
through alteration of appetite, modulate anxiety.

On the basis of these findings, we hypothesized 
that blockade of Orx2 receptors might be useful for 
the prevention of epilepsy and concomitant anxiety. 
Accordingly, we aimed to assess the effect of an Orx2R 
antagonist (TCS OX2 29) on PTZ-induced chemical kin-
dling and anxiety.

Methods
Drugs
Orexin antagonist (TCS OX2 29) was purchased 
from Tocris (Bristol, UK). Its chemical name is (2S)-
1-(3,4-Dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-
3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone 
hydrochloride. This drug was first introduced by Hirose 
et al. in 2003. After that, the drug has been used widely 
as a selective Orx2R antagonist. It promoted sleep [33], 
decreased heart rate, and blood pressure [34], reduced 
morphine place preference [35], prevented analgesia, and 
reduced alcohol self administration [36].

Pentylenetetrazol and sodium valproate were pur-
chased from Sigma (India) and Sanofi-aventis (France), 
respectively. PTZ and sodium valproate were dissolved in 
0.9% sterile saline. TCS OX2 29 was dissolved in dime-
thyl sulfoxide (DMSO), tween 80 and sterile 0.9% saline 
(10/10/80% v/v respectively).

Animals
Adult male Wistar rats (200–250  g) were used in this 
study. The animals were bred in the experimental animal 
house of Ferdowsi University. All animals were main-
tained under normal conditions (12/12 h light/dark cycle, 
temperature: 23 ± 2  °C), with ad  libitum availability of 
food and water. Each experimental group included seven 
animals.

Stereotaxic surgery and microinjections
Rats were anesthetized with an intraperitoneal (IP) 
administration of ketamine (100  mg/kg) and xylazine 
(4  mg/kg). They were fixed on a stereotaxic apparatus 
(Narishige, Tokyo, Japan). Enrofloxacin was injected to 
prevent infections and ketoprofen was administrated for 
post-operative analgesia. Stainless steel guide cannula 
(22-gauge) fitted with the infusion cannula (27-gauge, 
1 mm longer) was implanted into the left lateral ventri-
cle (AP = 0.8 mm, ML = 1.6 mm and D = 4 mm) accord-
ing to Paxinos and Watson’s stereotaxic atlas [37]. Acrylic 
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dental cement and surgical screws were used to fix the 
guide cannula. Six days after recovery from the stereo-
taxic surgery, different solutions (TCS OX2 29, valproate 
and vehicle) were injected into the left lateral ventricle 
(2  μl/rat) of awake and freely moving rats. Intracere-
broventricular (ICV) injections were done using an infu-
sion pump (Stoelting, USA) at the rate of 2 μl/min. At the 
end of experiments, 0.5 μl of methylene blue was injected 
through the guide cannula. After that, the rats were killed 
and the brain slices prepared using microtome checked 
under a stereo microscope to ensure the placement of 
cannula.

Induction of kindling and experimental design
For induction of kindling, PTZ (32 mg/kg) was injected 
intraperitoneally every other day for 23 days [38].

The vehicle (2  μl/rat), TCS OX2 29 (1, 3.5 and 7  μg/
rat) and valproate (as the control drug, 26 μg/rat), were 
administered ICV 30  min before PTZ injections. The 
doses for TCS OX2 29 and valproate were selected 
according to previous studies [4, 39]. After injection of 
PTZ, seizure-related behaviors were recorded for 30 min. 
The intensity of seizure behaviors was recorded on the 
following scale: 0 = no response; 1 = vibrissae twitching, 
mouth and facial jerks; 2 = myoclonic body jerks or head 
nodding; 3 = forelimb clonus; 4 = rearing, falling down, 
forelimb tonus and hindlimb clonus; and 5 = tonic exten-
sion of the hindlimb, status epilepticus [40, 41]. Accord-
ingly, we recorded the following parameters: (1) Median 
of seizure scores (2) Latency to the first forelimb clonus 
(S3L) (3) Duration of forelimb clonuses (4) Latency to the 
first sign of scale 4 behaviors (S4L) (5) Duration of scale 4 
behaviors (S4D).

Elevated plus‑maze (EPM)
EPM test is a standard method that has been employed 
for determining the anxious behaviors in rodents [42]. 
Hereafter, anxious behaviors in rats referred to as anxi-
ety. It consists of two open and two closed arms as a plus 
sign. The percentage of open arm entries (%OAE) and 
the percentage of time spent on the open arms (%OAT), 
as standard indices of anxiety, were recorded for 5 min. 
Total arm entries were also recorded as a measure of 
spontaneous locomotor activity. A significant increase 
in %OAT and %OAE represent a lower anxiety response 
[43].

On the last day of the experiments (30 min after PTZ 
injection), animals were placed on the EPM. To compare 
the effect of PTZ on anxiety, an extra control group of 
animals received TCS OX2 29 vehicle (2 µl/rat, ICV) and 
saline (6 ml/rat, IP) and were tested in the EPM.

Statistical analysis
The data for seizure stages were expressed as 
median ± interquartiles. The stages were analyzed using 
Kruskal–Wallis non-parametric one-way analysis of 
variance (ANOVA) followed by 2-tailed Mann–Whit-
ney’s U test. Other data were expressed as mean ± SEM. 
Differences between groups were analyzed by one-way 
analysis of variance which was followed by Tukey as 
post-test. The minimum level of significance was set at 
P < 0.05.

Results
The effects of TCS OX2 29 on chemical kindling
The results showed that administration of TCS OX2 29 
at the dose of 7 μg/rat significantly decreased median of 
seizure scores (P < 0.01). However, TCS OX2 29 at the 
doses of 1 and 3.5 μg/rat and valproate did not signifi-
cantly change the median of seizure scores (Fig. 1).

Furthermore, TCS OX2 29 at the dose of 7  μg/rat 
decreased the duration of the 3rd stage of seizure (S3 
duration, P < 0.01) and increased the stage 3 latency (S3 
latency, P < 0.01), in comparison with the control group. 
However, valproate failed to show such protective 
effects either on S3 duration or S3 latency (Figs. 2, 3).

TCS OX2 29 at dose of 7  μg/rat also decreased the 
duration of the 4th stage of seizure (S4 duration, 
P < 0.05) and increased the stage 4 latency (S4 latency, 
P < 0.01). Similarly, valproate decreased S4 duration 
(P < 0.05) and increased S4 latency (P < 0.01). TCS OX2 
29 at doses of 1 and 3.5 μg/rat had no significant effect 
on either S4 duration or S4 latency (Figs. 4, 5).

Fig. 1  The effect of intracerebroventricular injection of TCS OX2 29 
(1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on median of seizure 
scores in pentylenetetrazol-kindled rats. TCS OX2 29 at the dose 
of 7 μg/rat reduced median of seizure scores. Each bar represents 
median ± interquartiles. **P < 0.01 compared to vehicle-treated rats. 
In each group n = 7
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The effects of TCS OX2 29 on PTZ‑induced anxiety
The results of EPM test showed that kindling induced 
anxiety that was manifested as the diminished percentage 
of time spent on the open arms (P < 0.05) in vehicle/PTZ-
treated rats. In these animals, the locomotor activity was 
not different from the control group implying that PTZ 
induced an anxiety. However, administration of either 
valproate or TCS OX2 29 (1, 3.5 and 7  μg/rat) did not 
change the anxiety of PTZ-kindled rats (Fig. 6a–c).

Discussion
The results of this study showed that similar to val-
proate, intracerebroventricular administration of TCS 
OX2 29 at the highest dose (7  μg/rat) induced signifi-
cant anti-seizure effects on generalized convulsions in 
PTZ-kindled rats. For the first time, the results of our 
study revealed that Orx2R antagonists have the poten-
tial to be used in the prevention of partial seizures with 
secondary generalization. However, Orx2R antagonist 
failed to resolve concomitant anxiety.

It is presumed that blockade of the GABAergic sys-
tem and increased activity of the glutamatergic system 
are neuronal processes involved in the kindling [19, 44]. 
Previous studies revealed that orexin A and orexin B have 
stimulatory effects on the neuronal system. For example, 
Stanley and Fadel showed that injection of orexin A into 
the CA1 area of the hippocampus increased glutamate 
release [45]. Similarly, it was demonstrated that follow-
ing orexins injection into the cerebrospinal fluid, gluta-
mate level in the hippocampus was increased, and it was 
reduced after administration of Orx1R antagonist. Simi-
lar to these findings, Goudarzi et al. [46] showed that TCS 
OX2 29 reduced convulsive stages and duration. There is 

Fig. 2  The effect of intracerebroventricular injection of TCS OX2 29 
(1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on stage 3 duration 
in pentylenetetrazol-kindled rats. TCS OX2 29 at the dose of 7 μg/
rat reduced the stage 3 duration. Each bar represents mean ± SEM. 
**P < 0.01 compared to vehicle-treated rats. In each group n = 7

Fig. 3  The effect of intracerebroventricular injection of TCS OX2 
29 (1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on stage 3 latency 
in pentylenetetrazol-kindled rats. TCS OX2 29 at the dose of 7 μg/
rat increased latency of 3th stage of seizures. Each bar represents 
mean ± SEM. **P < 0.01 compared to vehicle-treated rats. In each 
group n = 7

Fig. 4  The effect of intracerebroventricular injection of TCS OX2 29 
(1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on stage 4 duration in 
pentylenetetrazol-kindled rats. TCS OX2 29 at the dose of 7 μg/rat and 
valproate at the dose of 26 μg/rat decreased duration of 4th stage 
of seizures. Each bar represents mean ± SEM. *P < 0.05 compared to 
vehicle-treated rats. In each group n = 7

Fig. 5  The effect of intracerebroventricular injection of TCS OX2 29 
(1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on stage 4 latency in 
pentylenetetrazol-kindled rats. TCS OX2 29 at the dose of 7 μg/rat 
and valproate at the dose of 26 μg/rat increased the latency period 
of stage 4 seizures. Each bar represents mean ± SEM. **P < 0.01 
compared to vehicle-treated rats. In each group n = 7



Page 5 of 8Asadi et al. BMC Neurosci  (2018) 19:49 

more evidence to support our results; in a recent study, 
it was demonstrated that administration of TCS OX2 29 
reduced the severity of seizures and neuronal damage in 
the hippocampus of the rats following PTZ administra-
tion and sleep deprivation [4]. Also, the orexinergic sys-
tem influenced the function of the limbic structures and 
the neocortex which are involved in controlling the inci-
dence of seizures and epilepsy through their projections 
to the neuromodulatory centers located in the brain stem 
[47, 48]. The high-density expression of Orx2R in CA3 
area of the hippocampus [49], can be a reason for the 
pro-convulsant effect of the orexins [50]. Furthermore, 

according to the previous evidence, orexin may also 
induce its stimulatory effects through the modulation of 
the GABAergic system. It is known that orexin affects 
the release of GABA [51] and upregulates mechanisms 
responsible for the synthesis and the release of glutamate 
[52]. In accordance, Goudarzi et al. [46] showed that fol-
lowing hippocampal Orx1R but not Orx2R blockade, the 
release of GABA was increased. Similarly, a dual orexin 
receptor antagonist increased the activity of GABAergic 
systems in the basal forebrain [51]. On the other hand, 
glutamate and GABA increase and decrease the activity 
of orexinergic neurons, respectively [53].

Another possibility that explains the effects of TCS 
OX2 29 on seizure is the activation of two distinct 
pathways by Orx2R. It was revealed that orexinergic 
receptors are present on different cortical GABAer-
gic interneurons [54, 55] and neocortical pyramidal 
cells [56]. Here, we suggest that there are connections 
between some cortical inhibitory interneurons and 
cortical pyramidal neurons (e.g., hippocampus). In our 
proposed mechanism, in spite of inhibitory actions of 
interneurons on pyramidal neurons, during activation 
of orexin receptors present on both neurons, pyramidal 
neurons will have normal outputs. In this study, TCS 
OX2 29 at the dose of 1  μg/rat reduced the pyrami-
dal neurons output after which the seizure threshold 
increased. However, TCS OX2 29 at the dose of 3.5 μg/
rat inhibited pyramidal neurons but exerted more 
inhibitory effects on the interneurons, so the output 
of pyramidal neurons increased followed by increased 
susceptibility to convulsions. This suggestion may be 
confirmed by Tang et  al. [57] study that showed the 
concentration dependent inhibition of Gq or Gi pro-
teins by Orx2R antagonists, which induced different 
effects. Hence, at the dose of 3.5  μg/rat of the Orx2R 
antagonist, stronger inhibition of interneurons may be 
explained by more coupling of orexin receptors with Gi 
rather than Gq. At the dose of 7 μg/rat, the antagonist 
may increase the tendency of interneurons receptors 
for coupling with Gq (instead of Gi) that will diminish 
pyramidal neurons outputs and convulsive behaviors. It 
is possible that orexins, by activation of either Orx1R 
or Orx2R, modulate the function of neurotransmitters 
other than GABA and glutamate. Such interaction was 
reported just recently for endocannabinoids as TCS 
OX2 29 enhanced the effect of a cannabinoid receptor 
antagonist in the conditioned place preference para-
digm [58].

Although we choose the dose of valproate as a stand-
ard antiepileptic drug according to a previous report 
[39], it did not induce a robust anti-seizure effect in the 
3rd stage of seizure in the this study. In clinical practice, 
valproate has been used extensively for the treatment of 

Fig. 6  a, b The effect of intracerebroventricular injection of TCS 
OX2 29 (1, 3.5 and 7 μg/rat) and valproate (26 µg/rat) on anxiety of 
PTZ-kindled rats. This figure shows PTZ induced anxiety that was 
not reversed either by TCS OX2 29 (1, 3.5 and 7 μg/rat) or valproate 
(26 μg/rat). c Shows that the locomotor activity of all groups were 
similar. Each bar represents mean ± SEM. #P < 0.05 compared to the 
saline-treated rats. n = 7. PTZ pentylenetetrazol
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various kinds of epilepsy including partial seizures. Val-
proate, via diverse pharmacological actions including the 
modulation of Na+ channels, inhibition of Ca2+ channels, 
inhibition of GABA transaminase, and increase in GABA 
concentration induces anticonvulsant effects [59]. How-
ever, there are reports showing that valproate has lower 
efficacy than carbamazepine, as an standard antiepilep-
tic drug, in the treatment of partial and secondary gen-
eralized tonic–clonic seizures. This may explain the low 
efficacy of valproate in this study [60, 61]. Stanojlović 
and colleagues showed that valproate rapidly reduced 
mean seizure score and audiogenic convulsions in met-
aphit-treated Wistar rats. However, the drug did not 
exhibit significant effect on electrocortical activity. So, 
they concluded that valproate is an anticonvulsant rather 
than antiepileptic drug [62]. By comparison, it may be 
suggested that TCS OX2 29 had a higher potency than 
valproate.

Epileptic patients also suffer from anxiety [25]. So, find-
ing medications that are able to treat both disorders are 
of great interest and importance. Our obtained results 
revealed that PTZ induced anxiety in the elevated plus-
maze. In parallel with our results, it was demonstrated 
that PTZ, by activation of the glutamatergic system, 
induced convulsion and caused anxiety [63]. We pre-
sumed that orexinergic system is a target that modu-
lates both anxiety and seizure. It has been reported that 
orexinergic system overactivation is an important factor 
in maintaining arousal and anxiety [64]. It was reported 
that depressive behaviors were higher in mice with lower 
hippocampal orexin [65]. In addition, knocking down 
of Orx2R in the basolateral amygdala increased anx-
ious behaviors in mice [66]. Approval of suvorexant, as a 
dual receptor antagonist, for the treatment of insomnia 
[67] shows the importance of the orexinergic system in 
sleep and wake cycle. There are numerous orexiner-
gic terminals in areas associated with stress and anxiety 
including the middle prefrontal cortex of cingulate cor-
tex. Also, ICV injection of orexin A induced anxiety in 
different experimental models of anxiety [28]. Similarly, 
it was reported that injection of orexin A and B in the 
paraventricular nuclei of the thalamus caused anxiety 
[27]. This evidence implies that orexinergic system is an 
important target in the modulation of stress and anxi-
ety [68]. However, it should be mentioned that previous 
studies showed that Orx1R has a more important role 
than Orx2R in the modulation of anxiety [64]. Accord-
ing to our results, TCS OX2 29 failed to overcome PTZ-
induced anxiety. This finding is possibly in accordance 
with previous studies showing that the anxiogenic effect 
of orexins is mediated mainly by Orx1R [69]. However, 
we cannot rule out the effect of TCS OX2 29 on anxiety 
at higher doses. Our results also revealed that the motor 

activity of the animals that received TCS OX2 29 was 
not different from the vehicle-treated group on the EPM. 
This finding may imply that the anticonvulsant effect of 
TCS OX2 29 at the dose of 7 µg/rat was not influenced 
by changes in muscle tone. One of the limitations of this 
study is that we used an animal model of anxiety that did 
not have a social component. For example, social interac-
tion test would be more applicable in such kind of stud-
ies. As the second limitation, electrical kindling has been 
reported with minor advantages over chemical kindling 
that makes it a better method for evaluation of the poten-
tial anticonvulsant drugs [70]. Finally, it is a possibility 
that orexin and its antagonists modulate epilepsy and 
anxiety via metabolic changes. For example, hyperhomo-
cysteinemia is reported to be affected by different dietary 
patterns [71]. Hyperhomocysteinemia has been related 
to anxiety-like behaviors in rats [72] and human [73]. On 
the other hand, low levels of homocysteine may induce 
epilepsy [74]. Considering the very important role of 
orexinergic system in feeding and nutrition, it is a possi-
bility that this system modulates anxiety and/or epilepsy 
via metabolic changes.

Our study showed that TCS OX2 29, as a selective 
Orx2R antagonist, reduced the severity of the seizures 
of the PTZ-kindled rats. However, it did not affect PTZ-
induced anxiety.

Conclusion
It may be suggested that the orexinergic system has the 
potential to be considered as an important target in the 
treatment of epilepsy.
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