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Abstract 

Background:  Retinal circuitry provides a fundamental window to neural networks, featuring widely investigated 
visual phenomena ranging from direction selectivity to fast detection of approaching motion. As the divide between 
experimental and theoretical visual neuroscience is fading, neuronal modeling has proven to be important for retinal 
research. In neuronal modeling a delicate balance is maintained between bio-plausibility and model tractability, giv-
ing rise to myriad modeling frameworks. One biologically detailed framework for neuro modeling is NeuroConstruct, 
which facilitates the creation, visualization and analysis of neural networks in 3D.

Results:  Here, we extended NeuroConstruct to support the generation of structured visual stimuli, to feature differ-
ent synaptic dynamics, to allow for heterogeneous synapse distribution and to enable rule-based synaptic connectiv-
ity between cell populations. We utilized this framework to demonstrate a simulation of a dense plexus of biologically 
realistic and morphologically detailed starburst amacrine cells. The amacrine cells were connected to a ganglion cell 
and stimulated with expanding and collapsing rings of light.

Conclusions:  This framework provides a powerful toolset for the investigation of the yet elusive underlying mecha-
nisms of retinal computations such as direction selectivity. Particularly, we showcased the way NeuroConstruct can be 
extended to support advanced field-specific neuro-modeling.
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Background
Computational modeling of neuronal dynamics is para-
mount for neuroscientific research. Particularly, con-
ductance-based modeling of the neural network holds a 
promise to uncover biological mechanisms which under-
lie higher functional behavior of neuronal frameworks 
[1, 2]. Neuronal modeling is often comprised of multiple 
specification layers, including morphological description, 
biophysical characterization, cell positioning, connectiv-
ity schemes, synapse definition and stimuli depiction. 
These models often incorporate detailed experimentally 

reconstructed 3D morphologies of neurons. Integrat-
ing all of the above into one parameterized model is a 
challenge many computational neuroscientists face, par-
ticularly in the face of the great availability of modeling 
environments [3].

To mitigate this challenge, Gleeson and colleagues 
developed NeuroConstruct, which facilitates the crea-
tion, visualization, and analysis of neural networks in 3D 
[4]. Each neuron is defined as a multi-compartmentalized 
entity, represented by an equivalent circuit and connect-
ing with other neurons via software-defined point pro-
cesses–synapses. NeuroConstruct was implemented to 
support different numerical solvers such as GENESIS 
and NEURON. Importantly, it uses the latest NeuroML 
specifications [5]. NeuroML, also developed by Gleeson 
and colleagues, is a specification language based on the 
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Extensible Markup Language (XML). It aims at standard-
izing the definition of detailed neuronal models.

Over the past decade, NeuroConstruct was widely 
adopted throughout the scientific community. For 
example, it was utilized by Rothman and colleagues to 
investigate a detailed layer 5 pyramidal cell model with 
dendritically distributed excitatory and inhibitory syn-
aptic input [6]. Vervaeke and colleagues also used Neu-
roConstruct to create an electrically coupled cerebellar 
Golgi cell network to explain the spread of desynchro-
nization in this network following sparse synaptic 
activation [7]. Lastly, Hanson and colleagues used Neu-
roConstruct to investigate how synaptic pathologies can 
underlie cognitive impairments [8].

Retinal circuitry provides a fundamental window to 
neural networks [9] and among its major responsibili-
ties are: (1) Detection of dim light flashes–even at the 
level of single photons; (2) High sensitivity to changes 
in textures, enabling the detection of moving patterns of 
light despite a constant level of illumination; (3) Detec-
tion of differential motion, enabling the differentiation of 
global motion (all elements in the Field Of View (FOV) 
are moving together) and local motion (one object within 
the FOV is moving); (4) Fast detection of approaching 
objects; (5) Encoding of spatial structures with spike 
latencies (cells in dark regions respond faster than cells 
in brighter regions). Each of these fundamental phenom-
ena is widely investigated by the research community, as 
some of the neuronal mechanisms are elusive. One of the 
classic open questions in retinal circuitry is the underly-
ing mechanism of directional sensitivity: the sensitivity of 
Direction Selective Ganglion Cells (DSGC) to a moving 
visual stimulus in one preferred direction. This fascinat-
ing phenomenon represents the ability of the retina to 
discard information and focus on one aspect of the visual 
scene. A detailed review of the above is given by Gollisch 
and colleagues [10]. These phenomena are commonly 
experimentally addressed with the projection of struc-
tured light (e.g. drifting bars, rings of light, etc.) on a ret-
ina [16]. Modeled virtual stimulation of structured light 
is therefore essential for model validation using experi-
mentally derived data as well as for the computational 
elucidation of the underlaying mechanisms.

While proved useful, NeuroConstruct is often extended 
to support different neuronal architectures. The neu-
ral networks of the retina are comprised of a multitude 
of neuron types and organized within a layered struc-
ture. Each network has a distinct function in transfer-
ring visual information [11]. One of the most investigated 
subjects in the retina is the interface between Starburst 
Amacrine Cells (SACs) and DSGCs. SACs differentially 
inhibit DSGCs in a phenomenon that underlies their 
receptive field properties, giving rise to their fundamental 

properties—being sensitive to a stimulus moving in a 
particular direction. SACs are predominantly driven 
by Bipolar Cells (BCs). BCs receive inputs from a set of 
light-sensitive photoreceptor cells and mainly respond 
with sustained graded potentials. The SACs—BCs inter-
face is comprised of different synapses which exhibit 
diverse dynamics. These synapses are not uniformly dis-
tributed and have distinct connectivity schemes. Adja-
cent SACs also reciprocally inhibit each other, giving rise 
to intricate properties which were shown to strengthen 
the directionality of DSGCs. An elaborate discussion is 
given in [12]. Modeling such a network requires the sup-
port of unique synaptic patterns as well as the careful 
implementation of the visual stimuli. NeuroConstruct, 
which natively does not support rule-based feature dis-
tribution and dynamics, must therefore be extended in 
order to support retinal circuitry modeling.

In this work, we extended NeuroConstruct to support 
retinal circuitry with some of its specific characteristics, 
connectivity patterns, and structured visual stimulation. 
We exemplified this framework using a simulation of 
two overlying grids of biologically realistic, morphologi-
cally detailed SACs, which were connected to a ganglion 
cell and stimulated with expanding and collapsing rings 
of light. This extended framework can be potentially uti-
lized to investigate the elusive underlying mechanism of 
direction selectivity, as well as other retinal phenomena 
such as ganglion cell sensitivity to moving texture [13], 
differential motion [14], and approaching motion [15].

Implementation
Framework
A schematic of the framework is shown in Fig.  1. The 
NeuroConstruct framework is comprised of five main 
components: (1) The morphology interface, with which 
biologically realistic NeuroML-specified reconstructed 
models of neuronal morphologies are imported, as well 
as existing morphological templates aimed at generat-
ing simple neuronal models with few compartments for 
rapid hypothesis testing; (2) Cell generation module, in 
which neurons are encapsulated as groups of sections, 
distinguished as axons, somata, and dendrites. Com-
partments are biophysically defined with a set of chan-
nel mechanisms. These mechanisms (e.g. membrane 
capacitance, axial resistance and activity dependent 
intracellular Ca2+ concentrations) are specified using the 
NeuroML framework and can be distributed through-
out the sections. Notably, mechanisms can be specified 
manually or utilized from an existing template; (3) A net-
work generation engine, in which neurons are arranged 
in cell groups (according to their specified types) and 
placed in 3D individually or according to a predefined 
pattern (such as evenly spaced packing or randomized 
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placement). Following placement, synaptic connections 
are defined within or between cell groups. Tradition-
ally, synaptic connections are defined in NeuroConstruct 
using connectivity patterns, which can be morphologi-
cally (proximity of pre- and post-synaptic sections) or 
volume based. Both can be parameterized (number of 
synapses per cells, connection lengths) to allow control 
of synaptic distribution. In this component, the stimuli of 
the network are defined as external activation, tradition-
ally as either fixed current steps or random spike trains 
of synaptic input; (4) Simulation interface, in which the 
simulation data is organized and formulated to run on 
numerical solvers such as NEURON or GENESIS; (5) 
Once the solver retrieves the simulation results, data can 
be browsed and analyzed within NeuroConstruct, as well 
as exported to MATLAB or EXCEL.

NeuroConstruct provides a powerful tool for neuronal 
modeling. We enhance it further with a series of scripts 
and packages to enable an increased level of details, 
specifically tailored to parts of the retinal circuitry. The 
following details must be addressed in order to numeri-
cally investigate retinal circuitry: (1) Generation of struc-
tured visual stimuli. Over the past decades, several visual 

stimuli were used to investigate the different aspects of 
visual processing. For example, moving bars of light, 
as well as expanding and collapsing rings of light, were 
used to investigate motion processing, particularly direc-
tional selectivity [16]. However, the generation of visual 
stimuli in a simulation environment is far from trivial, as 
the stimulation for every synapse in the model has to be 
resolved for every time interval according to the chosen 
light pattern; (2) The dynamic of the synaptic response 
may differ according to its distance from the cell soma. 
Most notably, neuronal activity can be characterized as 
sustained or transient, where the neural response per-
sists during the duration of the stimuli, or only during 
the onset/offset of the stimulus [17]; (3) Synapse distri-
bution may not be homogeneous across the neuronal 
dendritic tree, particularly, synapse density may depend 
upon its distance from the cell soma [18]; (4) Rule-based 
synaptic connectivity may include intricate considera-
tions such as the orientation of the section relative to the 
soma. Extending NeuroConstruct regarding the afore-
mentioned aspects is an important steppingstone in the 
adoption of the framework to model retina circuitry for 
visual processing.

Fig. 1  Framework schematic. The NeuroConstruct framework is comprised of the morphology import, cell generation, network generation, 
simulation interface, and data export module. Our extensions support the generation of visual stimuli, heterogenous dynamic properties of 
synapses, synapse distribution and connectivity rules. Our extension modules interface with NeuroConstruct via a NeuroML compiler
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The four extensions proposed above were implemented 
with Python and coupled with a new compiler which con-
verts user code to NeuroML specifications. These specifi-
cation files can be incorporated into NeuroConstruct for 
visualization, simulation and analysis. Description and 
installation instructions are given in the Additional files. 
Code examples (python) are given as Additional file 1 and 
described below.

Results
Here we show the utilization of NeuroConstruct and 
our extension modules for modeling the SAC plexus in 
the retina. SACs are predominantly stimulated by BCs 
and provide inhibitory signals to ganglion cells, which 
convey the visual stimuli through the optic nerve to the 
brain. SACs are essential for efficient direction selec-
tivity via several mechanisms [19]. SACs are radially 

symmetric retinal interneurons, with a synonymous 
axon/dendrite functionality, termed processes (Fig.  2a). 
They tile the retina in an extensive overlapping pattern 
(Fig. 2b), as adjacent SACs reciprocally inhibit each other 
via GABA junctions. Notably, these inhibitory synapses 
are restricted to the distal 1/3 of the dendritic tree [18] 
(Fig.  2c). In our model, we utilized NeuroML specifica-
tion to define a 3 × 3 grid of SACs (Fig. 2d), then overlaid 
it with a second 2x2 grid of SACs to achieve dense cover-
age (Fig. 2e). SACs plexus structure was inspired by [16]. 
We hypothesized that two overlapping grids of SACs will 
be sufficient to demonstrate direction selectivity. SAC 
morphology was adopted from [18], and available via 
Neuromorpho.org (ID: NMO_50993). See the Additional 
file 2 for example implementation.

One of the mechanisms in which SACs contribute 
to direction selectivity is based on selective synaptic 

Fig. 2  SAC plexus. a Biologically realistic morphology of a SAC. b Schematic of inter-SAC inhibitory synaptic signaling distribution. Synapses are 
restricted to distal 1/3 of the SAC’s dendritic tree. c Two intersecting SAC’s and the formed inhibitory synapses. d a 3x3 grid of intersecting SACs and 
their synapses. e the SAC plexus created with 2 overlapping 3x3 and 2x2 grids of biologically realistic SACs
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connections to a DSGC, which has a preferred direction 
of visual stimulus to which it strongly responds (Fig. 3a). 
Particularly, SAC processes form GABAergic synaptic 
connections with DSGC, where the process is oriented in 
the DSGC’s null direction. To implement this connectiv-
ity rule, we defined the probability of a synapse formation 
as dependent upon the inverse cosine similarity between 
the section’s directionality (relative to the soma) and a 
predefined preferred-direction of the DSGC. Illustra-
tion of the cosine similarity measure is shown in Fig. 3b 
and the connection between a SAC and DSGC is shown 
in Fig.  3c. In our model, we positioned a DSGC in the 
middle of the SACs layers, slightly vertical above, where 
it comes into close contact with 5 neighboring SACs, 
forming synapses where appropriate. Architecture was 

inspired by the results of [16] (Fig. 3d). See the Additional 
file 3 for example implementation.

For a visual stimulus, we wrote a script which speci-
fies expanding and collapsing rings of light and cal-
culates the injected current for each time interval of 
the simulation (Fig.  4, left panel). Following the model 
suggested by Greene and colleagues [17], BCs—SACs 
proximal (1/3) synapses were defined as sustained and 
others as transient (Fig.  4, right panel). These synapses 
were distributed according to the synapse distribution 
model proposed by Vlasits and colleagues [18], where 
they are apparent in 30% of the processes’ sections at 
the proximal 1/3 of the dendritic tree, in 3% of the dis-
tal 1/3 and linearly distributed in between according to: 
[0.03(x−60) + 0.3(100−x)]/40, where x is the section’s 

Fig. 3  SAC—DSGC selective synaptic connections. a Biologically realistic morphology of a DSGC. b Schematics of cosine similarity showing higher 
similarity for the vectors in the top graph, relative to vectors at the bottom graph. c Connectivity pattern between biologically realistic SAC and 
DSGC. d Three views of the connectivity pattern between the SAC plexus and the DSGC
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distance from the soma. Stimuli were applied via BCs 
solely on the middle SAC (Fig.  5a, indexed 5, colored 
green), which has a propagating effect on the rest via 
their synaptic connections. Response dynamics of each 

synapse is dependent upon the location of the synapse, 
particularly its distance from the soma.

We execute the simulation over NeuroConstruct 
(using NEURON API) and our extension library for both 

Fig. 4  Visual stimuli and dynamic distribution. (LEFT) Schematics of expanding and collapsing rings of lights used for visual stimulation. Time (t) is 
in arbitrary units. (RIGHT) Schematic of the distribution of the synaptic dynamic properties of the SACs, distinguishing between the inner proximal 
1/3 of the dendritic tree and the other 2/3, featuring synapses with sustained and transient response respectively

Fig. 5  Simulation results. a Indices label the Starburst Amacrine Cell (SAC) within the 2 layered plexus. b SAC voltage (somata) traces response for 
expanding (top) and collapsing (bottom) rings of light. Light cycles frequency is 6 Hz (illumination period of 166 mSec). c Ganglion voltage (soma) 
traces (labeled as 14) response for expanding and collapsing rings of light). A voltage trance for the 5th SAC was added as a reference
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expanding and collapsing rings of light. We indexed 
the cells (Fig. 5a) and traced the voltage at their somata 
in a constant 25 mSec interval. Results are shown in 
Fig.  5b. The middle SAC (Fig.  5a, indexed 5, colored 
green) generated a sustained ~ 40  mV depolarization 
response throughout the stimulation period. The rest 
of the SACs, connected to the middle SAC via GABAe-
rgic synapses, responded in a ~ 8  mV hyperpolarization 
response as expected. The monitored voltage waves in 
the cells throughout the SAC grid are shown in Fig. 5a, 
where we differentiated the inner cells (indexed 10−13, 
colored orange) from the peripheral cells (indexed 1–4 
and 6–9, colored purple). Note that the only cell which is 
activated within the SAC grid is the middle cell (indexed 
5). The middle cell inhibits his neighboring cells, which 
in turn inhibit their neighbors. While the response of the 
activated SAC (indexed 5) at the soma is similar for both 
expanding and collapsing stimuli, the propagated inhibi-
tory signals, transmitted to the DSGC, have a different 
net effect on its voltage, depending on the direction of 
the projected structured light (Fig. 5c). For a structured 
projection of collapsing rings of light, the DSGC respond 
with fast hyperpolarization and slow polarization (we 
hypothesize that this is due the relatively large number of 
SAC at the periphery and the sustained dynamics of BC-
SAC synapses at the proximal part of the SAC). On the 
contrast, the DSGC respond to structured projection of 
expanding rings of the light with gradual hyperpolariza-
tion and fast polarization (we hypothesize that this is due 
to the relatively small number of SAC at the center and 
the transient dynamics of BC-SAC synapses at the proxi-
mal part of the SAC). The results clearly demonstrate the 
directionality of the network, which we hypothesized to 
have emerged from the network topology and synaptic 
distribution. See the Additional files 4 and 5 for exam-
ple implementation of collapsing and expanding stimuli 
respectively. The scripts referenced throughout this sec-
tion are utilizing various functions which are given in the 
Additional file 6.

Conclusions
Understanding retinal information processing and its 
underlying neural circuitry has attracted significant 
attention in the past decades. The traditional view of the 
retina, as being a relay or a filter for visual information, 
has been shattered by recent advancements which dem-
onstrate the importance of the retina in solving a diverse 
set of computational tasks, providing processed data to 
downstream brain areas [9]. Many of the retinal mecha-
nisms for vision processing are still comprehensively 
investigated, as their complexity and computational 
importance become evident.

Models of retinal processing span over a wide spec-
trum of biological plausibility. Some are highly abstract, 
neglecting biological details, often relying on the lin-
ear–nonlinear (LN) model in which a cascade of linear 
and non-linear functions is applied over a visual stim-
ulus [20] or on neural coding [21, 22]. Others extend 
LN with retina-inspired sampling functions, spatiotem-
poral filtering, and color-coding [23]. Models can also 
focus on the layered structure of the retina, either by 
reproducing connectivity in successive retinal layers 
with detailed cellular and synaptic parameters [24] or 
by defining a spatiotemporal filter cascade with shunt-
ing feedback to represent the process of visual inputs 
traversing throughout the retina layers [25]. However, 
these models lack the biological plausibility needed to 
model retinal processing at the level of molecules and 
dynamics, which are essential for the support or elimi-
nation of biologically detailed hypotheses regarding 
retinal mechanisms.

Simulating detailed model is not a trivial undertak-
ing. Numerous frameworks must be developed, aiming 
at increasing modeling productivity and encapsulating 
technical and tedious processes from neuroscientists, 
allowing them to focus on the creative parts of their 
work [26]. One of the most important environments for 
detailed neuronal simulations is NEURON, which pro-
vides a numerical framework for biologically detailed 
models [27]. However, NEURON was developed with 
Hoc, a C-inspired Domain Specific programming 
Language (DSL), which limits NEURON’s utility and 
maintenance, establishing the need for a friendly yet 
comprehensive modeling environment.

In an attempt to make software easy to use and 
develop, Lieberman and colleagues put an emphasis on 
user intuition in their seminal paper: “End-User Devel-
opment (EUD): An Emerging Paradigm” [28]. Accord-
ing to the EUD approach, users should focus their 
attention on the creative process of their work, not 
worrying about neither syntax nor hardware-related 
aspects. In the context of neuronal modeling, Gleeson 
and colleagues developed NeuroConstruct in which 
models can be defined in 3D (with ideally little need for 
writing code) and simulated with NEURON [4]. In this 
work we extended NeuroConstruct in multiple dimen-
sions, allowing scientists to conveniently define visual 
stimulation and to easily distribute synapses using ret-
inal-relevant connectivity rules and response dynam-
ics. Moreover, we aimed to showcase the ways in which 
NeuroConstruct can be extended to support advanced 
field-specific neuromodelling, inspiring neuroscien-
tists to utilize the immense power of NeuroConstruct 
toward their own neuromodeling exploits.
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Availability and requirements
Project name NeuroConstruct-based implementation 
of Retinal Circuitry.

Project home page Code is provided as supplemental 
information.

Operating system Windows.
Programming language Python, Java.
Other requirements Java 8u201, Notepad 7.6.4, Neu-

roConstruct 1.7.2, NEURON 7.2, Python 3.7. Please see 
detailed description and code examples in the supple-
mental information.

License MIT license
Any restrictions to use by non-academics None
Note The installation instructions of the framework, 

with code examples, are provided as supplemental 
information. As described above, the framework uses a 
series of dependable modules, which are freely accessi-
ble and described in the supplemental information.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1286​8-020-00578​-0.

 Additional file 1. Installation and manual. 

Additional file 2. Code example 1: Network creation. 

Additional file 3. Code example 2: Synapse creation and distribution. 

Additional file 4. Code example 3: Collapsing light stimulation. 

Additional file 5. Code example 4: Expanding light stimulation. 

Additional file 6. Code example 4: General functions.

Abbreviations
BC: Bipolar cell; DSGC: Direction-selective ganglion cell; DSL: Domain specific 
programming language; EUD: End-user development; XML: Extensible markup 
language; FOV: Field of view; LN: linear–nonlinear; SAC: Starburst Amacrine 
cells.
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