Skip to content

Advertisement

  • Poster presentation
  • Open Access

Reduction of multi-compartmental biophysical models by incremental, automated retuning of their parameters and synaptic weights

BMC Neuroscience201415 (Suppl 1) :P178

https://doi.org/10.1186/1471-2202-15-S1-P178

  • Published:

Keywords

  • Local Optimisation
  • Computational Resource
  • Internal State
  • Active Model
  • Large Network

When simulating large networks of neuronal models with conductance-based membrane dynamics, neuronal models with large numbers of compartments are often not practical due to the computational resources required. In this case, a common approach is to seek a model with fewer compartments that approximates the behaviour of the full compartmental model [1, 2]. While analytical techniques to reduce multi-compartmental models consisting of passive, quasi-active or restricted classes of active models exist [35], in general, the reduction of active models requires parameter retuning in order to retain functionally relevant properties of the model. We propose an incremental, automated parameter retuning approach to reduce the number of compartments, which avoids labor-intensive manual retuning and ensures key functional properties of the model are maintained.

Starting from the full compartmental model, the number of compartments is incrementally reduced by merging compartment subsets into single, electronically equivalent compartments. After each compartment reduction phase, all parameters of the model, including synaptic weights, are locally optimised to best match the dynamics and post-synaptic potentials of the full compartmental model using multiple objectives, including phase-plane trajectory histograms of membrane voltage and internal states [6, 7]. The successive local optimisations during the incremental reduction in the number of compartments ensures the model parameters do not transition to qualitatively distinct regions of the parameter space. The multi-compartmental models are iteratively reduced in this manner until key functional properties can no longer be maintained within specified tolerances.

The proposed algorithm is demonstrated on multi-compartmental models of neurons in the cerebellum.

Authors’ Affiliations

(1)
Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
(2)
University of Antwerp, Antwerp, Belgium

References

  1. Bush PC, Sejnowski TJ: Reduced compartmental models of neocortical pyramidal cells. J. Neurosci. Meth. 1993, 46: 159-166. 10.1016/0165-0270(93)90151-G.View ArticleGoogle Scholar
  2. Davison AP, Feng J, Brown D: A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull. 2000, 51 (5): 393-9. 10.1016/S0361-9230(99)00256-7.View ArticlePubMedGoogle Scholar
  3. Rall W: Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol. 1959, 1 (5): 491-527. 10.1016/0014-4886(59)90046-9.View ArticlePubMedGoogle Scholar
  4. Ohme M, Schierwagen A: An equivalent cable model for neuronal trees with active membrane. Biol Cybern. 1998, 78 (3): 227-43. 10.1007/s004220050429.View ArticlePubMedGoogle Scholar
  5. Hedrick KR, Cox SJ: Structure-preserving model reduction of passive and quasi-active neurons. J Comput Neurosci. 2013, 34 (1): 1-26. 10.1007/s10827-012-0403-y.View ArticlePubMedGoogle Scholar
  6. Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I: A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. FNINS. 2007, 1 (1): 7-18. 10.3389/neuro.01.1.1.001.2007.View ArticleGoogle Scholar
  7. Van Geit W, Achard P, De Schutter E: Neurofitter: a parameter tuning package for a wide range of electrophysiological neuron models. Frontiers in Neuroinformatics. 2007, 1: 1-18.PubMed CentralView ArticlePubMedGoogle Scholar

Copyright

Advertisement